
Lecture 11 8.251 Spring 2007 

Lecture 11 - Topics 

• Static gauge, transverse velocity and string action 

• Motion of free open string endpoints 

Reading: Section 6.6 - 6.9 
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σ = 0 and σ = σ1 are the endpoints of the string. [τi, τf ] is the time interval 
that the string is evolving over. String described at end by δxµ(τf , σ) (σ varies 
from 0 to σ1). 

How do we make this variation δS vanish? 

Let σ∗ ∈ {σ = 0, σ1} (so whatever we say about σ applies to both σ = 0 and ∗ 

σ1). 

δxµ(τ, σ )∗

Impose a Dirichlet BC. Some xµ(τ, σ ) is a constant oas a function of τ .∗

∂xµ 

∂τ 
(τ, σ∗) = 0 

Then δxµ(τ, σ ) = 0. But can’t impose Dirichelt BC on x0(τ, σ ). Time always ∗ ∗
flows. Never a constant. 
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Impose Free BCs: 
δxµ(τ, σ ) arbitrary ⇒ P∗
since time flows) 

σ
µ (τ, σ ) = 0. Must include P∗ =0

σ
µ (τ, σ ) = 0 (again ∗

D-Branes


D2-Brane: 2 = number of spatial dimensions of the object 
DP-Brane: P = number of spatial dimensions (with free BCs) where endpoints 
can move freely 

BCs for motion of an open string on a D2-brane: 
x3(τ, σ ) = 0 ∗

σ(τ, σ ) = 0 ∗0P
σ(τ, σ ) = 0 ∗1P
σ(τ, σ ) = 0 ∗2P

σ = 0 or σ1∗ 

D0-Brane: 

All strings forced to start and end at the point (string looks like a closed string 
but has different equations of motion because it can’t move away freely) 
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D1-Brane: 

Looks like a string, but not actually one.


Can have up to Dd-Branes.


Have cartesian coordinates for:


1. 

String swejpg out spacetime surface by moving through time. 

2. 

Actually matters whether 
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Orientation matters. Will see this later. 

Static Gauge 

Will enable us to draw lines on the surface (2) from lines on (1) 

Consider line τ = τ0 or 1 

Draw on worldsheet 

τ(Q) = t(Q) 

t = τ 
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x 0(τ, σ) = ct = cτ 

Description of Coordinates: 

xµ(τ, σ) = {cτ, �x(t, σ)} = {cτ, �x(τ, σ)} 

Remember σ is not the length of the string - it’s a parameter, so σ1 is constant. 
BUT the string can elongate or shorten, of course. 

Some useful quantities: 

ẋµ(τ, σ) = (c, ∂�x/∂t) 

xµ�(τ, σ) = (0, ∂�x/∂σ) 

ẋ x� = ∂�x/∂t ∂�x/∂σ · · 

ẋ2 = −c 2 + (∂�x/∂ t)2 

x�2 = (∂�x/∂σ)2 

Consider static string stretched between x1 = 0 and x1 = a 

x 1(τ, σ) = x 1(σ) (independent of τ) 

Plot x1(σ) vs σ 

Since Nambu-Gotta action, reparam-invar, doesn’t matter what path chosen as 
long as not e.g 
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So: 

ẋµ = (c, 0,�0) ⇒ ẋ2 = −c 2 

xµ� = (0, dx1/dσ,�0) x�2 = (dx1/dσ)2 ⇒ 

Nambu-Gotta action: 

� � σ1 
� 

T0 dx1 
S = − 

c 
dτ dσ (ẋ · x1)2 − (−c2)( 

dσ 
)2 � � 0 

σ1 

= −T0 dτ dσ(dx1/dσ)
� 0


= −T0 dτ (x 1(σ1) − x 1(0)) 

tf 

= dt(−T0a) 
ti 

Recall S = (K − V )dt. String not moving so K = 0. For stretched string, V 
= tension distance. So physically, the tension of the string in constant. T0a:·
potential energy of static string stretched to length a. 

Where did point P go from t to t + dt?

No physical answer! So hard to talk about velocites.
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But let’s construct a velocity we can all agree on. Construct plane perpendicular 
to P . Say P �� moves to (P �)�� where P � is the intersection of the plane with the 
string at t + dt. This is called the perpendicular velocity. (String doesn’t actu­
ally neccesarily move perpendicularly, but this well-defined quantity pretends it 
does). 

ds = |d�x| → d�x/ds = 1 

d�x/ds is a unit vector tangent to the string. 

∂�x ∂�x ∂�x ∂�x 
v� = ⊥ 

∂t 
− 

∂t 
· 
∂x ∂s 

v 2 = (∂�x/∂t)2 − (∂�x/∂t ∂�x/∂s)2 
⊥ · 

Let’s simplify Nambu-Gotta action: 
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� �2 � � �2�� �2 
2 ∂�x ∂�x 2 + 

∂�x ∂�x

(ẋ · x�)2 − ẋ x�2 = 

∂t 
· 
∂σ 

− −c 
∂t ∂σ
�	 �2�� �2 � �2� 

=	
ds ∂�x ∂�x 

+c 2 ∂�x 
dσ ∂t 

· 
∂s 

− 
∂t 

=	
ds 

[c 2 − v 2 ]
dσ ⊥

Nambu-Gotta action knew nothing mattered except perpendicular velocity. No 
way to tell how a point moves. 

ds vSo √. . . = c dσ 1 − c

2 

2 

� � σ1 
� 

2 � � �
ds v

dt dσ ⊥ dt ds 2 /c2S = −T0
0 dσ 

1 − 
c2 

= −T0 1 − v⊥

Recall: L = −m0c
2 1 − v2/c2.


T0ds: rest energy of small section of string.


Consider a totally free open string (no D-branes)


Pσµ(τ, σ∗) = 0 

σµ T0 (ẋ x�)ẋµ − ẋ2x�µ · P	 = − 
c √

. . . � � � � �2� 
∂�x ∂�x 2 ∂x ∂xµ 

∂t ∂s ∂t ∂s T0 
· + c − 

= − 
c2 

� 
2 /c21 − v⊥

Note magic with the ds/dσ 
µ = 0: 

∂�x ∂�x 

Pσµ = − 
T

c 
0 � 

1 
∂s 

−
· 
v

∂t 

/c2 
|endpoint = 0 

2 
⊥

Numerator = 0 = ∂�x ∂�x = 0. So endpoint ∂�x ∂�x .∂s	 ∂t ∂s ⊥ ∂t · 

So at endpoint, either: 
1. ∂�x/∂t⊥ string or 
2. ∂�x/∂t = 0 

But (2) can’t be, because: 
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P�σ = T0 1 − v2/c2∂�x/∂s = 0 

v 2 = c 2 since ∂�x/∂s = 0 �

Motion perpendicular to string always if free. 
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