Lecture 18 8.251 Spring 2007

Lecture 18 - Topics

e Open Strings
Still for open string:
Heisenberg operators: X(r,0), 2o, P (o), pT

[XI(U)v PTJ(Tv OJ)] = “7”5(0 - 0/)

[x(;’pﬂ = —i
0 0
= =2dp"+ & 2pTpT =H
A ) S
Hamiltonian, H
1 0X~
= [ do(P~" = g
p / o 2ra! Ot )
H =2a'ptp~ = L from analysis of classical string

Are we sure H = 2a/pTp~? After all, p~ is the product of lots of operators,
which can be ill-defined. Must be careful in our quantum case.

X _xI" —¢

1 .
X1(r,0) =zl + V2ol + iv2a/ Z —al cos(no)e™ T
n

n#0
pTd — Lai]
2o’ 01
(XT 4+ X1 (r,0) = V2o Z al el=in(r+o)) o€ [0, (1)
nez
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(X = X"\ (r,0) = V2o’ Z al el=in(r=2)) o € [0,7] (2)

nez

This is an important computation. Later, we will do this for closed strings too,
and we’ll see very similar (though not same).

Best way to select Fourier modes is in [0, 27| but o € [0,7]. ¢ — —0

(X7 = XT)(7,~0) = V2a! 3 alelin(rto) (2)

nez

This makes sense when o € [—,0].

Al(r,0) = V2o Z al e(=in(r+a) o € [—m,

nez
_ { (X' +X")(r,0) o €0,q]
Tl (xf=x1 o € [—n,0]

Now have o defined over [—, 7].

(XL(r,0), X1(r,0")] = 2xa/in'?5(c — o)
(XI(r,0), X7 (1,6")] =0

(X" (r,0),X7(1,06’)] =0  X’s commute at different ¢’s so can then differentiate.

(X1 £ X)(7,0), (X7 £ X7)(1,0)] = (X! £ X")(7,0), (X7 £ X")(7,0)]

d
= :i:47r0/i77[‘]%(0 —0o')
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[AT(r,0), A7(r,0")] = 20/ 7 elmm TE D T D0 o]

m’,n’/
drain’? L5(o — o) 0,0 €0, 7]
= dmndin’! Lé(c—0') =0 o € [0,7],0" € [-7,0]

—4malin!’ d(fg)cS(a' —0) = 471'0/1'771']%5(0 —0') 0,0 €[-7,0]

. ! - ’ d
Z e(—zm (T+a))e(—m (t+0o ))[afn,,a;{,] _ 27Ti77]Jd76(0- _ 0_/) o, o e [—7‘(‘, 71']
g

m/,n’/

Apply the following integral operations:

1 (7 ; 1 [ -
— (imo) | 1 _(ino)
o doe o /,0 do'e

Divide by e(=“m+m)7) on both sides:

[OéI 7a'{z] — _nnIJéern’Oe(i(m-i-n)T)

I I

[anw an] = m5M+n,0n1J

Commutation relation proved in book:

[x0,p7] = in'”

Note:

o = Vaalp!

rInv O‘vlz] =mn

al=al'\/n  n>0

[G{ IJ5

m,n
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O/in = aer\/» = (ain)+ n<0

Opposite signs for m and n

[, ] =

I+ J-‘r] =0

m ’'n

m > 0,n > 0:

[a{n\/Tina ai\/ﬁ] = an5m,n

I o] =nl7s

[amv Ay, m,n

Don’t have to worry if n # 0. Might have to worry if n = 0.

But what we want is: H = L = 2a/ptp~. Li = %ZpEZ al_pozzjj but a’s don’t
commute so don’t know if this is right.

- 1
M? = —p*=2pTp~ —plp’ = aLé —plp!

1
Ly O‘(I)Ofé“‘ Za,p p+a1’ )

1
= a/plpl +Za_po¢£ + §(D - 2)2]7

p=1 p=1

Note oy, is destruction operation convention. oy,«¢ is creation operation con-
vention.
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1 1
2 _ I+ 1
Mo/(g pa,, ap+§(D72)§ p)

p=1 p=1

In classical theory, had

ol i, ] -
M == Znan an+§(D—2)Zp
n=1

p=1

Showed all states of string had mass j 0. Couldn’t get anything intersting with-
out mass.

Would be great here if 1(D — 2) > pe1 P = —1. Then:

1
M? = J(Z naltal —1)

Now want oscillation states without mass

> 1
§ =1+2 44 ... =——
p:1p +243+4+ D

Crazy, huh? Not true in general, of course, but almost true in one sense. Since
we want:

p=1
1 . . .
—(D-2) 13/ —1 = D = 26(dimension of string)
Now how is Y2 | p = — 157!

Recall Riemann Zeta Function:
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=1

s)=) —
1 1 >
((s=-D)=-5 =D —=>n
n=1 n=1

¢(s) well-defined and convergent for s > 2. Doesn’t converge for s = 1(pole). ¢
defined on complex plane.

The beauty of analytic functions: If you know it is defined in a very small finite
regin, you know it everywhere by the Cauchy-Riemann.

1
2pTpT = —/(LOl +a) a = constant
a

Define for once and for all:

1
1 I 1 I I
Ly = 50400‘04' g 00,
p=1

[M~%(a, D), M~ (a,D)] =0

Set standards of messy computation. All books omit at least some details.

M~ ~a,ol ~[L} L} = (m—-n)L}

min T dim. of spacetime

So need to find algebra of Viroso operators.



