Lecture 22 8.251 Spring 2007

Last Time: dynamical variables needed for describing superstrings

I
a=1,2

v =Vi(r—0)
by = V3(1 +0)

BCs: {(1,0.)001(1,0.) — 93(7,0.)095(7,0.) = 0

Suppose: ¥ (7,0) = 0 then ¥!(7) = 0 by ¥{ = U/ (7 — 7). Bad! Instead relate
Y1 and 1)y, assemble full spin or W (7, o)

U! continuous at o = 0 because of BC ¥i (1, 7) = £i(r, 7).

Either periodic or antiperiodic. Take periodic and get Rammond. (Actually
more complicated). Take antiperiodic and get Neven Schwarz BCS (2 years
after Rammond)

NS BC: W!(r,7) = -Vl (7,—7). ¥l(1,0) = ZTGZ+% blelmir(r=a)),
Creation Operations: bl_5/2, bI_3/2, bl_l/2
Destruction Operations: bé/z, b§/27 b{/Q

U/ is anticommutative, all b’ operations anticommutative.

bI bJ — 5r+s7051J

778

NS State:

M et ][I T eto]wsiers

I=2n=1 J:2T:%7%7%



Lecture 22 8.251 Spring 2007

Pr1 € {Oa 1}

Recall for open bosonic string, normal ordered:

- (53X alhe)

pEZ

Now:
( Salal+l 3w rbﬁ)
pEZ r€Z+§
1
= > bl el =— Z rblv!
p—_1_3 —1.3
27 2
= Z rb’, b}
1
:—(D—2)(2+++ )
1
12
1 11
=——(D-2)=—
2( )2 1
1
=——(D-2
For boson, ag = —i.
In open bosonic string, M? = L(...+ 1) where a = —1 but 24 contributions so
ap = 7%.
Here, ays = —ﬁ for antiperiodic fermion.

Z‘Lp ap + Z rb’ bl + (D —2)(ap + ans))

r=413
272
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Add text here.

In early 1970s, confusion over whether these are bosons or fermions. It’ll turn
out that these are photons.

Count states of a given N+

Given:

number of states with N1=n

JONL =0, af [ON+ =1, (a])?|ON+ =2

1
filz)=1+z+2°4+... = 1=
Given: )
a;:fg(x):1+z2+x4+...:m
JONL =0, a [ON+ =2, (af)?|ON+ =4
@) =1+z+22+... = !
1 = —1_x
Given: ) L
af,ay : fi(z)fa(x) = -2 1—22

Now can do full open bosonic string with af, a;’, ag', .

Generating Function:

oo

1
fos:Hm

n=1
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partitions of n

Partitions of 4: ({4},{3,1},{2,2},{2,1,1},{1,1,1,1}) = number of ways to get
N+t =4

For full open string:
1
fos = H (1— zn)2
n=1

This gives you degeneracy of any level of open string.

Given b} fi(z) =1+
Given by fo(z) =1+
Given b, b5 fia(z) = fi(z) fo(x) = (1 +2)(1 + 2?)
1+

Given b7: fi(@) = N3
2
st(x):Z a(r) 2" =177 +8-2°0 43627 + (#)2!
- ~~
# of states with o/ M2=r
15 (1—1—3:”1)8
T 1—2zn

Ramond: V! (7,0) =Y dlexp(—in(r — 0)). dl,,d% = §,nin06'7.

m’'n

dl — 8: 4 creation and 4 destruction = &1, &, &3, &y
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Vacuum State: |0)

[0): 1
¢’ 10): 6
§1£2638410): 1

This yields 8, |RY).

¢'0): 4
¢1e7e%10): 4

This yields 8, |RS).

8+ 8 = 16 gound states. Total set of vacua states: |RA>, A

2 types.

Ramond mass formula:

1 oo o0
M2 = J(Z aipaé + Z nd”,d.
p=1 n=1

Substraction constant is equal to zero since ap = i

a/'M?2 =0 |RT)
o M? =1 a£1 |Ri‘>,d{1 |RS)

\1@ .
o’y |Rg),d, |RY)

=1...16, split into

Why is this supersymmetry? Left and right columns have opposite fermionic
states. Don’t know if R{ is a boston or a fermion, but know R$ is the opposite.

No bosons that look like |R{) in real world

Partition function in Raman Sector

0o n\ 8
falo) =16 T (52)
n=1



Lecture 22 8.251 Spring 2007

To get supersymmtry, throw out half of the states from each sector and put
them together.

truncated _ 1 ﬁ 1+ .’ljn_% 8_ lo_o[ ﬂ 8
s 2\/5 n—1 1—an 1—gm

n=1

Anything with an odd number of fermions will change the sign.

fe’e) 8
? 1+ 2™
=8
s L8 T (1557
n=1
Do we or don’t we have supersymmetry?

1829: German Mathematician Jacoby wrote treatise on elliptic function with
this identity, labelled “a very strange identity”. Critical dimension D = 10 for
supersymmetry.



