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1.	 Integrating the Lane­Emden Equation Rearranging, we arrive at the desired coupled sys­

tem 
1.1. Problem 

dφ 
(5)Integrate the Lane­Emden Equation dξ 

= u


� � du 2u

1 d

ξ2 dφ 
= −φn	 = −φn 

(1) dξ 
− 

ξ	
(6) 

ξ2 dξ dξ 
Plotting the dimensionless temperature, φ(ξ) ver­

for polytropic indices of n = 1.0, 1.5, 2.0, 2.5, 3.0, sus the dimensionless radius, ξ, for the n values of 
and 3.5. interest, we arrive at the graph below. Note that 

n increases from 1 to 3.5 as we move left to right. 
Break up this second order differential equation 

into two first­order, coupled equations in dφ/dξ ≡ 
u and du/dξ. Use a 4th­order Runge­Kutta inte­
gration scheme or some other equivalent integra­
tion method to find φ(ξ). Recall the boundary 
conditions at the center: u(0) = 0 and φ(0) = 1. 

Use the analytic expression for φ(ξ) near the 
center: 

ξ2


φ(ξ) = 1 − (2)

6 

to help start the integration. The surface is de­
fined by φ(ξ1) = 0. 

Now we similarly plot the dimensionless density, 
φ(ξ)n versus the normalized dimensionless radius, 

Plot the dimensionless temperature, φ(ξ), and ξ. Note that n decreases from 3.5 to 1 as we move 
the dimensionless density, φn(ξ), for all 6 values left to right. 
of n. It would be best to put all the temperature 
plots on one graph and all the density plots on 
another. 

1.2. Solution 

1.2.1. Coupled System of Differential Equations 

We take dφ/dξ ≡ u. Thus we can write 

1 d � � 
ξ2 u = −φn (3)

ξ2 dξ 

By the product rule, 

1
2ξu + ξ2 du 

= −φn (4) More detailed versions of the plots are in the Ap­
ξ2 dξ pendix. 
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2.	 Tabulating Some Physical Properties of 
Polytropes 

2.1. Problem 

As the integrations in part 1 are underway, 
compute for each model the dimensionless poten­
tial energy, Ω (in units of −GM 2/R), and the 
dimensionless moment of inertia, k (in units of 
M R2). Tabulate ξ1, −(dφ/dξ)ξ1 , Ω, and k for each 
of the 6 polytropic models. 

2.2. Solution 

2.2.1. Location of Stellar Surfaces 

The location of the stellar surface, ξ1, which is 
defined by φ(ξ1) = 0, can be numerically deter­
mined using the data from the RK4 integration 
in section 1. The values of −(dφ/dξ)ξ1 , which is 
just −u(ξ1), can then be found from examining 
the same RK4 data specifically at ξ1. These data 
are tabulated below. 

n ξ1 −(dφ/dξ)ξ1 

1.0 3.141 0.318 
1.5 3.652 0.203 
2.0 4.353 0.127 
2.5 5.355 0.0763 
3.0 6.896 0.0424 
3.5 9.535 0.0208 

2.2.2. Dimensionless Potential Energy 

The gravitational potential energy of a sphere 
of radius r is given by the equation 

r 2 

U (r) = −4πG 
M (r�)ρ(r�)r�

dr� (7) 
0 r� 

Thus, the first step in determining the potential 
is to find the mass as a function of ξ. To do so, 
we want to integrate the density using spherical 
shells. Let ρ0 be the central density of the object 
and let us take the radius of the object to be R. 
Then we can write 

R3 � ξ 

M (ξ) = 4πρ0 
ξ3 φ(ξ�)nξ�2dξ� (8) 
1 0 

This allows us to write the expression for potential 
as 

0R
5 � ξ1 

φ(ξ)nξ 

�� ξ−16π2Gρ2 

U =	 φ(ξ�)nξ�2dξ� dξ 
ξ5 
1 0 0 

(9) 

Ω, the unitless potential (in −GM 2/R), will then 
be given by 

Ω = � 
−U R �2 (10) 

G 4πρ0 
R3 � 

0 
ξ1 φ(ξ�)nξ�2dξ�

ξ3 
1 

Plugging in U, and simplifying, we arrive at the 
expression � ξ1φ(ξ)nξ 

�� ξ
φ(ξ�)nξ�2dξ� dξξ1 0 0

Ω = �� 
0 
ξ1 φ(ξ�)nξ�2dξ� 

�2 (11) 

These integrals do not appear to have a simple 
closed form. Thus, we set � ξ1 

�� ξ 

U � = φ(ξ)nξ φ(ξ�)nξ�2dξ� dξ (12) 
0 0 

and � ξ1 

M � = φ(ξ�)nξ�2dξ� (13) 
0 

Numerically evaluating these integrals using a 
two­point Newton­Cotes method, and then plug­
ging the results into the expression for Ω, we find 

n U � M � Ω Ωfrac 

1.0 2.355 3.140 0.750 3/4 
1.5 1.727 2.713 0.857 6/7 
2.0 1.335 2.410 1.000 1 
2.5 1.070 2.186 1.200 6/5 
3.0 0.885 2.017 1.500 3/2 
3.5 0.749 1.889 2.000 2 

From these results, we can see that Ω appears to 
obey the relation 

3
Ω(n) = 

5 − n 
(14) 

The simplicity of this relation seems to imply that 
it is possible to find an elegant simplification for 
the integral formulation of Ω in equation 11. 

2.2.3. An Analytical Expression for U 

This derivation is due to Chandrasekhar via 
Cox and Guili. 
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We begin with the differential of potential en­ 2.2.4. Dimensionless Moment of Inertia 
ergy due to a spherical shell of mass Mr The moment of inertia of a body is given by the 

− 
GMr

r

dMr (15) formula �dU = 
2I = ρ(r)r dV (24) 

V 
⊥

From this we can the write � 
GM 2 � 

GM 2 Therefore, the moment of inertia will be propor­
rdU = d r − 

2r2 
dr (16) tional to the following integral. − 

2r � ξ1
� 2π� π

Applying hydrostatic equilibrium, φ(ξ)nξ4sin 3(θ) dθ dφ dξ (25)I ∝ 

dP/dr = −(GMr/r2)ρ 
0 0 0 

Simplifying and inserting the correct constants, we 
we find � � arrive at the expression 

GM 2 1 dP rdU = d − 
2r 

+
2 
Mr 

ρ 
(17)	

I =
8πρ0R

5 � ξ1 

φ(ξ)nξ4 dξ (26)
3ξ5 

1 0From the relation 

P ∝ ρ(n+1)/n The unitless moment of inertia (in M R2) will thus 
be given by 

we can show that 
8πρ0 R

5 � ξ1 φ(ξ)nξ4 dξ dP P	 3ξ5 0= (n + 1)d (18) k = 1 

ρ ρ 4πρ0 R5 � 
0 
ξ 
φ(ξ�)nξ�2dξ� 

(27) 
ξ3 
1 

which allow us to write equation 17 as � � � � Putting M � as above and setting 
GM 2 1 P 

dU = d r + 
2
(n + 1)Mrd	 � ξ1

− 
2r	 ρ 

(19) 
I � = φ(ξ)nξ4 dξ (28) 

We can then write this as 0 

GMr 
2 1 MrP	 We can write 

dU =d − 
2r 

+ 
2
(n + 1)d

ρ	 k =
2I

(29) 
1 P	 3M �ξ2 

1 

2
(n + 1) dMr− 

ρ 
(20)	 We again use a two­point Newton­Cotes method 

to evaluate the integrals and plug in the results to 
We apply the virial theorem, concluding that find k. 

P 4 
dMr − 3 d P πr 3 + dU = 0 (21)

ρ 3 

Now we eliminate (P/ρ)dMr in equation 20. Solv­
ing for dU we find � � � � �

3 GM 2 MrP 
dU =

5 − n
d − r + (n + 1)d 

r	 ρ 

4 

n I � k 
1.0 12.152 0.261 
1.5 11.116 0.205 
2.0 10.607 0.155 
2.5 10.511 0.112 
3.0 10.843 0.0754 
3.5 11.737 0.0456 

−(n + 1)d P πr 3 (22)
3	 3. Model of the Sun 

If we integrate this from r = 0 to r = R, we can 3.1. Problem 
see that the last two terms vanish, giving us 

Use an n = 3 polytropic model to represent the 
3 GM 2 

U = − 
5 − n R 

(23)	 internal structure of the Sun. The two parameters 
to fix are M = M and R = R�. 

This is what we found numerically. 
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(a) Plot the physical temperature (in K) vs. ra­
dial distance in units of r/R. Plot log T vs. r/R. 
Do the same for the physical density (g/cm3). 
Again, plot log ρ vs. r/R. Instead of using the 
values for the central density ρ0, and central tem­
perature T0, deduced for an n = 3 polytrope with 
M = M and R = R�, take the known values of 
ρ0= 158 g/cm3 and T0 = 15.7 × 106 K. 

(b) Compute the nuclear luminosity of the sun 
using the above temperature and density profiles. 
Take the nuclear energy generation rate to be 

e(−33.81T −1/3 
)6�(ρ, T ) = 2.46 × 106ρ2X2T −2/3 

6 

which is in ergs cm−3sec−1, where ρ is in g/cm3 , 
T6 is the temperature in units of 106K, and X is 
the hydrogen mass fraction. (take X = 0.6). Re­
duce the problem to a dimensioned constant times 
an integral involving only functions of φ and ξ. 
(There will also appear a T0 inside the integral 
for which you can plug in the value of 15.7 × 106) 
Show the value of your constant and the form of 
the dimensionless integral. Evaluate the nuclear 
luminosity of the Sun in units of ergs sec−1 . 

3.2. Solutions 

3.2.1. Solar Temperature Plots 

We first plot temperature against normalized 
radius 

Now we plot the logarithm of temperature 

3.2.2. Solar Density Plots 

We plot the density against normalized radius 

Now we plot the logarithm of density 

3.2.3. Solar Nuclear Luminosity 

We have both density and temperature for an 
n = 3 polytrope as a function of ξ. Thus we can 
write, 

R3 � ξ1 

L = 4π � ξ2�(ρ(ξ), T (ξ))dξ (30)� 
ξ3 
1 0 
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Using the unitless, polytropic density and temper­
ature, we can write � ξ1 

L� = Lc 
0 

ξ2φ(ξ)16/3 e−13.5φ(ξ)−1/3 

dξ (31) 

where, 

R3 

= 2.46 × 106 × ρ2 
0 × X2 × T −2/3 × 4π � (32)Lc 0 ξ3


1


Thus, Lc is our dimensioned constant, which must 
be in ergs/s, and we can evaluate it, giving 

Lc = 4.546 × 1040 (33) 

Numerically evaluating the integral using a two­
point Newton­Cotes method, we arrive at the re­
sult � ξ1 

ξ2φ(ξ)16/3 e−13.5φ(ξ)−1/3 

dξ = 3.26 × 10−7 

0 
(34) 

And thus, 

L = 1.48 × 1034ergs/s (35) 

This is within an order of magnitude of the ac­
tual solar luminosity, which seems reasonable for 
a simple polytropic model. 

5 



A. Plots 
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