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Problem Set 11 

Due: Friday, May 5 (in lecture)


Reading: Zeilik & Gregory, Chapters 19, 20, and start 21


Problem 1 

“X­Ray Burst Source” 

A neutron star accretes 1021 grams of hydrogen­rich matter from a binary companion star 
during the 5­hour interval since its last burst. The accreted matter forms a thin spherical 
shell on the surface of the neutron star. At some instant there is runaway thermonuclear 
burning of the accreted matter; all the fusion reactions are completed in � 1 second. Assume 
that the fraction of the rest mass of the accreted matter that is converted to energy is equal 
to 0.003. As a result of the energy released, the surface of the neutron star becomes very 
hot and it radiates away this excess energy in the form of black body radiation. Take the 
radius of the neutron star to be 10 km. 

a. How much energy is released in the burst? 
b. If the burst lasts for about 10 sec, what is the average luminosity of the burst? Compare 
this to the luminosity of the Sun. 
c. Assume that during the burst the surface of the neutron star reaches a temperature T 
which remains nearly constant over an interval of ∼ 10 sec. Find T . 
d. Use the Wien displacement law (page 172 in Z&G) to demonstrate why these events are 
called “X­ray bursts”. 

Problem 2 

“Accretion Powered X­Ray Source” 

While studying a typical X­ray source in the Andromeda galaxy, the X­ray telescope on the 
Chandra observatory detected 300 X­rays, each of energy ∼ 3 keV (∼ 5 × 10−9 ergs), during 
a 10,000 sec observation. Assume that these X­rays result from accretion of matter onto a 
neutron star that is in a binary system within the Andromeda galaxy (distance ∼ 700 kpc). 
Further assume that almost all of the accretion energy is emitted in the X­ray region of the 
spectrum (near ∼ 3 keV). You also need to know that the effective collecting area of the 
X­ray telescope is ∼ 1000 cm2 . 

a. Make an estimate of the X­ray luminosity of this source. 
b. Compute an approximate mass accretion rate (in M� yr−1) that is required to supply the 

1




power for the X­ray production. Assume a neutron star mass and radius of 1.4 M� and 10 
km, respectively. 

Problem 3


“Interstellar Extinction”


Zeilik & Gregory, Chapter 15, Problem 1, page 307.


[Hint: The intrinsic color of such a star is B − V = 0, while the absolute visual magnitude,

MV = +0.7] 

Problem 4 Optional


“21–cm Hydrogen Radiation”


Zeilik & Gregory, Chapter 15, Problem 8, page 308.


[Hint: The spontaneous decay timescale for a hydrogen atom to emit 21–cm radiation is

about 107 years.] 

Problem 5


“Distance to a Dark Cloud”


Zeilik & Gregory, Chapter 15, Problem 15, page 308.


Problem 6


“Short Problems”


Zeilik & Gregory, Chapter 15, Problems 5 and 10, page 308.


[Notes: In Problem 5, “absorption lines” refers to the visible region of the spectrum; for

Problem 10, the Balmer formula can be found on page 161 of Zeilik & Gregory]


Problem 7


“Short Problems”


Zeilik & Gregory, Chapter 15, Problems 4 and 12, page 308.


Problem 8 Optional


“Planetary Nebula”


Near the end of its life, a star may blow off its outer envelope leaving only a hot remnant 
“white dwarf” star. The ultraviolet light from the hot central star can then fluoresce the 
matter that has been ejected. The result is called a “planetary nebula”, an example of which 
is shown in Figure 15­11 on page 294 of Z&G. 

a. Assume that these objects lost their envelopes approximately 30,000 years ago and that 
the ejected matter has been expanding at a rate of 25 km s−1 ever since. Compute the 
present radius, Rs, of the expanding shell, which we take to be spherically symmetric. 
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b. If the mass of the ejected envelope is 1/2 M� (� 1033 g) find the average number density 
of atoms within the shell at the present time. Assume that the shell is composed of pure 
hydrogen (mH = 1.66 × 10−24 g) and that there is a uniform density, n, everywhere within 
the radius Rs. 
c. Compute the bolometric luminosity of the central star if its radius and temperature are 
109 cm and 50,000 degrees K, respectively. 
d. If one half of the luminosity of the central star is emitted at wavelengths shorter than 
the Lyman limit (916 Å), estimate the number of photons per second that are emitted with 
λ < 916 Å(photon energy > 13.6 eV = 2.2 × 10−11 ergs). 
e. Use the result of part (d) and the formalism that was developed in lecture to understand 
Stromgren spheres to estimate the radius of the nebula that can be fluoresced (“lit up”) by 
the central star. How does the calculated radius of the optically bright nebula compare to the 
radius Rs calculated above. [Useful relation: the rate (per unit volume) at which electrons 
and protons recombine to form neutral hydrogen is given by n2 α, where α = 3 × 10−13 cm−3 

H 

s−1.] 
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