Chapter 3

Cosmology

3.1 Foundations

The pivotal moment in the history of modern cosmology was the “Great Debate” about the physical
size of the Milky Way galaxy between Harlow Shapley and Heber D. Curtis, which took place on
April 26th 1920. The general consensus was that Shapley’s position was stronger, concluding that
the Milky was was quite large, and included such objects like the Large and Small Magellenic Clouds
and the Andromeda galaxy (not known at that time to be an actually galaxy in itself). A few years
later in 1923, Edwin Hubble showed that Andromeda was actually very far away, and thus much
bigger than previously thought. While contradicting Shapley’s argument and making the Milky Way
itself smaller, Hubble ended up making the universe much larger.

In 1926, Hubble proposed his eponymous distance-redshift relation, with recession velocity linearly
proportional to distance,

¥ = HF (3.1)

Y

where H is the Hubble parameter (in units of inverse time) and ¥ and v are the position and velocity
in space as measured by an observer. The Hubble relation is the first of four “pillars” of modern
cosmoology. An immediate consequence of is the homogeneity of space: observers at all points in
space measure the same recession. If an observer in the Milky Way (see Fig. 3.1) measures the
velocities of galaxies at relative positions r; and ry:

\_/"1 = Hfl

\72 == HFQ, (32)
then an observer in galaxy 1 will measure the velocity of galaxy 2 to be
\721 = H(I_"Q - fl) (33)

This linear scaling relation is a direct result of the homogeneous expansion of the universe.

In 1926, with only crude techniques for measuring extragalactic distances, Hubble determined
a value for H of ~ 500 km/s/Mpc, much larger than the currently accepted value of H = 72 + 8
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r r, Figure 3.1: Two galaxies as seen from the Milky Way. An observer in
galaxy #1 sees galaxy #2 receding with velocity H (75 — 77).

MW

km/s/Mpc. This measurement proceeds through a chain of primary, secondary and tertiary “dis-
tance indicators,” most of which involve an empirically established relation between some distance-
independent observable quantity and the intrinsic luminosity of the object considered. The most
important link in this chain is the period-luminosity relation for Cepheid variables. This is then used
to calibrate indicators that can be seen at greater distances: type Ia supernovae, the Faber-Jackson
and Tully-Fisher relations, surface brightness fluctuations in elliptical galaxies and the luminosity
function of planetary nebulae. The Cepheids are themselves calibrated by measuring the distance
to the Large Magellanic cloud by a suite of methods that includes the light echo from supernova
1987a, Cepheids measured in the Milky Way and RR Lyrae stars. A second route to Cepheid cali-
bration is the exquisitely accurate geometric distance to NGC 4258 as determined from the observed
acceleration of the water masers in its active galactic nucleus.

The second pillar of modern cosmology is its apparent isotropy. All manner of cosmological
phenomena — counts of distant galaxies, radio sources, X-ray sources and gamma ray bursts — appear
to be independent of angular position in the sky. The sky looks roughly the same in all directions
and at all wavelengths (after accounting for the additional absorption and emission from the nearby
galactic plane). Along with a general form of Copernicus’ principle, arguing against the earth being
the center of the universe, i. e. there isno “special place” in the universe, isotropy implies homogeneity,
thus suggesting that on the largest spatial scales, density perturbations all become smoothed out.

The third pillar of modern cosmology is the measured abundances of the light elements, particu-
larly hydrogen and helium. From basic nuclear reaction calculations, the amount of helium produced
in stars cannot be more than about three times that of the heavier elements:

AY

NG < 3. (3.4)
With measured cosmic abundances closer to 70% H, 28% He, and 2% (Z >He), it is clear that the
major portion of helium in the universe must not have been produced in stars. In 1948, Gamow,
Alpher, and Herman ran the expansion of the universe “backwards,” heating up the photon back-
ground to the point that would have been necessary to produce a cosmic mass fraction of 25% in
helium from primordial nuclear reactions. Given the present-day density of baryons, they predicted
a red-shifted background photon temperature of 6 °K. Then, in 1965, Penzias and Wilson were the
first to experimentally measure a static radio signal corresponding to a thermal temperature of ~ 3
°K, what is now known as the Cosmic Microwave Background (CMB) radiation, spatially isotropic
to about one part in 10°.

To develop a rudimentary model for the dynamics of an expanding universe, we need to introduce
one fundamental result from general relativity. A direct analogy to Newton’s first and second theo-
rems, Birkhoff’s theorem states that for any system with spherical symmetry, concentric shells are
only affected by the mass and energy interior to their radius, which collectively behaves as a point
particle at the origin. In an infinite universe with uniform density pgy, the specific Newtonian energy
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Q>1 . chillier still
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Figure 3.2: Three futures.

big bang big crunch

Figure 3.3: The rectangular region represents the universe
with uniform density p(¢). The circle represents a spherical
o(t) shell whose growth we follow with Newtonian dynamics.

of a spherical shell with radius r is

= —H§T2 - ?G,O(ﬂj. (35)
It is convenient to define the cosmological density parameter €2y, the fraction of “critical” density
needed to just close the expansion (E = 0):

871G poy
Qo = )
°~T 3H?

(3.6)

Here and throughout the discussion of cosmology, the subscript “0” will generally refer to the value
of a given parameter at the present epoch. The three interesting possibilities for {2, are

Q>1 : E<O closed, bound
Q=1 : E=0 critical, “Einstein-de Sitter”
Q<1 : E>0 open, unbound, (3.7)

each corresponding to a qualitatively different history and future for the universe (see Fig. 3.2). One
of the major goals of modern cosmology is to conclusively measure €y, and thus determine the global
geometry of the universe.

3.2 Newtonian spherical model

In this Section we will develop the simplest model for cosmic expansion, following the dynamics of
an expanding spherical shell of matter with radius r(¢) in Newtonian gravity (see Fig. 3.3). For
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any bound system (€29 > 1), there is a maximum radius of expansion rp,x for any shell. At this
turn-around point, the shell velocity is zero, so the energy determines the radius

GM,

Tmax

E=-—

(3.8)

Plugging into equation (3.5), we can solve for the expansion velocity
dr 11\
— =v=+2GM, [-——) . 3.9
dt v (7" rmax> (3:9)
Following standard techniques for solving central-force problems, make a change of variables:

r . 9 dr
—— =sin“z,
’rmax Tmax

= 2sin z cos xzdx, (3.10)

giving for equation (3.9)

2sinx cos x 2GM
— dzx =

3
cotx Tiax

dt. (3.11)

Converting to the Keplerian eccentric anomaly n with an equivalent eccentricity of e = 1, let

x =n/2 and then
<2G ) /dt / (1 — cosn)d (3.12)

This gives parametric solutions of ¢(n) and r(n):

=3 (s0) " = sinn) (3.13)

87 G Pmax
and r
r(n) = rr;X(l —cosn), (3.14)
where we have introduced the density
_3M
pmax -_— 47_‘_7.3

max

that corresponds to the density of the matter within the spherical shell at the point of maximum
radius rmax.

From equations (3.13) and (3.14), we can derive expressions for the Hubble and density parameters
H(n) and Q(n) for this particular spherical perturbation

dr/dt 1dr/dn 87 G Prax 1/2 sin 7
Hn) r r dt/dn ( 3 (1 — cosn)? (3.15)
and 8r 0
s
Q) = g = (3.16)

3H2  14cosn’
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For under-dense regions with €2 < 1 the shell is unbound and there is no maximum radius.
Fortunately, all of the above results can nonetheless carry forward, with the difference that hyperbolic
trigonometric functions are substituted for ordinary trigometric functions:

1—cosn — coshn—1
n—sinny — sinhn—17n
cosm — coshnp
sinp — sinhp (3.17)

Since under-dense shells have positive energy, the expansion velocity at infinity approaches a finite,
positive value. The radius r,, marks transition from decelerated to free expansion.

20GM 1 [(dr\?

o0

Though we have used time as the abscissa in Fig. 3.2, it is not an observable quantity. Much
more useful is the redshift of photons emitted at some early time.

For small values of 7, both the over-dense and the under-dense spheres behave similarly:

Hn) ~ = (L)m n° (3.19)

12 \ 87G pmax
r(n) ~ %7“772, (3.20)
giving the important result for early times
roc 3 (3.21)

which is independent of the actual value for 2.

While neither the trigonometric or hyperbolic solutions are valid for {2 = 1, there are still some
well-defined quantities that can be derived by taking the appropriate limits from Eqn. 3.16 (n —

0,2 —1):
(BN s (1 N (3.22)
~ \4nGp (n2/2)3/2  \67Gp ' .

The dimensionless parameter Ht is a good way to describe the global expansion of the universe. For

a critical density,

(n — sinn) siny
(1 —cosn)?

2

This is a good point for a quick digression to define one of the most important terms in cosmology,
the redshift. Due to Hubble’s law of expansion, we can equate the distance to objects with their
observed recessional velocity. This velocity is most commonly determined by measuring the change
in wavelength of light emitted by that object due to its velocity relative to the distant observer.
Since most objects in the universe are moving away from us, we call this Doppler shift “redshift”,



6 CHAPTER 3. COSMOLOGY

N absort
> Figure 3.4: A photon is emitted at eccentric anomaly 7em

and absorbed at 7gpsors-

Table 3.1: Struture in the universe

T1/2 M(Vi2)/(puVis2)  teottapse/to
ellipticals 2h ! kpe 10t 1073
clusters of galaxies 1 h™! Mpc 103 10795
superclusters 20 h~! Mpc 3 not yet
voids 50 h=! Mpc 1/3 never will

since the red part of the visible spectrum has longer wavelength than the blue. For a photon that
has wavelength Agni¢ in the rest frame of the emitter and wavelength A,ps in the rest frame of the
observer, the redshift z is defined as

)\0 S
1+z=-2 (3.24)
)\emit
For nonrelativistic velocities v < ¢, the redshift can be approximated as
AN dt dr/d A
z= =Y = HyAt = Hy—An = r/ nAn == , (3.25)
Aemit € dn r r

where At is the difference in cosmological time between the emission and detection events. Similarly,
An is the difference as measured in the eccentric anomaly parameter (see Fig. 3.4). Thus we see how
the redshift can act as a more easily measurable proxy for the time and n variables. More remarkably,
redshift exactly tracts the size of any shell and the of the universe as a whole. The wavelength of
photon and the universe by the same amount.

3.3 Perturbations: the spherical model

The perfectly uniform universe considered above would be a boring place to live. Fortunately our
universe isn’t. Small scale density perturbations present at some early epoch grow by gravitational
condensation into larger perturbations and eventually form the non-linear structures that are the
bread and butter of astronomers. A caricature of the kinds of structures observed in the universe is
given in Table 3.1

To apply the spherical shell model to structure formation in an expanding background universe,
it is helpful to think about the perturbation as having an initial density enhancement of
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Ap = M, (3.26)

p Pu
where p, is the density inside the spherical perturbation and p, is the unperturbed background
density. Consider two spherical shell models evolving in parallel (see Fig. 3.5), each measuring (n)
and r(n) according to its own parameterization (recall that the dependence of r and t on 7 are
functions of the density parameter). Give one shell an overdensity of p, and the companion shell the
same density as the background p,. Then by setting ¢,(n,) = t,(7.) in equations (3.13) and (3.23),
we can measure the time to collapse. Assuming a critical background (€2, = 1), we have

3 1/2 Np — sin 1, _ 1 12 (3.27)
47 Gp, (1 — cosmy)3/2 67G pu ' '

Solving for the density of the perturbation,

P9 (np — sinnp)? (3.28)
pu 2 (1—cosn,)?
so at early times (small 7,),
Pp 3 o
— =1+ —n. 3.29
10 2

Figure 3.5: The growth of a perturbation with density p,
compared to a region with density p,.

Combining with equation (3.19), we find that at early times, like the radius, the density grows
algebraically as

A
ZPe 213, (3.30)
Pu
The local Hubble parameter evolves as
Hy,  3ny(ny —sinmp) L,
— =" x1-—7. 3.31
H, 2 (1—cosny)? 20" (3:31)

Note that the smaller value for the Hubble parameter corresponds to the perturbation expanding
more slowly than the background. From equations (3.29) and (3.31), we find the fractional difference
in expansion rates
A _ 18y -
o =35, (3.

Dropping the assumption that €2, = 1 and carrying the calculation to higher order in 7 one finds
A_H — _1%94/7

3.33
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Figure 3.6: Overdense regions collapse to sheets and fila-
ments (bottom left) while underdense regions expand to form
voids that are nearly spherical (bottom right). Take the ellip-
soidal region in the top figure to be overdense. Point A will

decelerate more rapidly than it would if only the inscribed
A sphere were comparably overdense. Point B will decelerate
(‘) B less rapidly than it would it the entire circumscribed region
v were comparably overdense. But since the inscribed and cir-
cumscribed spherical regions would collapse at the same rate,

soidal region in the top figure to be underdense. Point A
will decelerate less rapidly than it would if only the inscribed
sphere were comparably underdense. Point B will decelerate
more rapidly than it would if the entire circumscribed region
were comparably overdense. But since the inscribed and cir-
cumscribed spherical regions would collapse at the same rate,
the ellipsoid becomes rounder with time.

Q the ellipsoid becomes flatter with time. Now take the ellip-

(although in the literature one often sees 4/7 approximated as 0.6).

The nonlinear growth regime is said to begin at the point where 7, ~ 7, which is also the turn-
around point for an over-dense perturbation that stops expanding and begins to collapse. Again by
setting ¢, = t,, we find the over-density of the perturbation at rmax:

1 1/2 o 3 1/2 . Ppmax 9_7r2 (3:34)
67G py 2 \ 87G ppmax ou 167 '

The collapse itself is complete when 7, = 27, which gives a singularity in the density [r,(27) = 0].
However, for real astrophysical objects, the random particle motions acquired from the collapse
contribute a positive kinetic energy K¢, to the object at equilibrium. Recalling the virial theorem
from Chapter 1, we set the total energy at equilibrium to be the total potential energy at the turn-
around point Wi,,,, where the kinetic energy is zero.

1
Weq + Kea = 5 Weq = Winn (3.35)

For a constant mass M, the gravitational potential energy of a system goes as ~ M?/r, so equation
(3.35) implies that 7eq = Tmax/2, and the collapsed density is pp collapse = 8Pp,max- During this time
of collapse from 7, = m — 27, the background universe continued to expand. Combining equations
(3.27) and (3.34), we find the background density at time of collapse

u,collapse ]‘
Pucollapse _ 2 (3.36)

Pumax 4’
giving the density contrast of the final collapsed object to be

(&) — 1872, (3.37)
Pu collapse
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A qualitative explanation for the shapes of these collapsed objects (or alternatively expanded
underdense regions) is presented in Figure 3.6.

3.4 Recombination

While the total density parameter €2 can possibly be determined by global measurements of the uni-
verse’s expansion, the individual components in matter (€2,,,), radiation (£2,), and “normal” baryonic
matter (£2,) can be determined more directly by local measurements. The critical density, where
2 =1, is easily calculated in familiar units:

3H?

perit = o= = 1.88 % 10"%h? g/cm®, (3.38)

where h is the current value of the Hubble parameter in units of 100 km/s/Mpc (from recent obser-
vations h = 0.72). If the density is entirely in baryons, then pey; corresponds to a number density of
ny = 1.13 x 107® cm 3, of course averaged over all of intergalactic space. This is a tricky measure-
ment to make since we cannot observe mass directly, but only infer it from the observable luminosity
coming from stars and galaxies. From the galaxy luminosity function introduced in Section 1.3, the
total density in galaxies is

M M M
Peal = <f> /(I)(L)LdL = <f> LT (a+2) = <f> 1.05 x 10°h Lo Mpc™. (3.39)

Within gaaxies measurements of baryonic mass in gas and dust and stars, the average mass-to-light

ratio is M u
<—> ~10-—2, (3.40)
L gal Lg

(or perhaps even smaller) giving a density parameter for galactic baryons of py g = 7% 10 32k g/ cm®
or 2 a1 = 0.004, well below the critical value needed to bound the universe gravitationally. Even if
we include all the dark matter indirectly observed in clusters of galaxies(see Section 2.4), with

M M,
<—> ~ 350h =2, (3.41)
L clus L@

dynamic measurements still only give €2,,, = 0.20 & 0.05.

Well, what about the radiation? As Einstein famously showed in 1905, mass and energy are
interchangeable, so the enormous number of cosmic background photons should also slow the expan-

sion of the universe. This is a quantity more easily measured directly, since the energy density of a

blackbody radiation field is
an
=7 (3.42)
where o is the Stefan-Boltzmann constant. For the observed CMB temperature of 7, = 2.728 °K,
this gives p, = 4.7 x 1073 g/cm®; Q, = 3.5 x 1075, which we can safely neglect when calculating
present-day expansion dynamics. But this was not always the case. Looking back in time, when

the universe was physically smaller (or at least everything was closer together), the radiation density
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Figure 3.7: A photon heads toward the Milky Way from the “sur-
face of last scattering” at redshift (1 + z) ~ 1500. If reionization

was higher, even more so than the matter density. Thinking of the CMB as a collection of particles
(photons) in a box (the universe) with scale length a, it is clear that as the box expands, the density of
particles decreases as n ~ a2, just like the massive particles. However, unlike the massive particles,

the individual photons are redshifted with the expansion, losing energy and thus mass like E ~ a™*,

so the photon energy density decreases with an expanding universe as p, ~ a™*.

Since the expansion is directly related to the expansion factor (1+ z) = a™!, we can solve for the

radiation density as a function of redshift (our favorite measurement of time in cosmology):

Pr_ Pro (1 +Z)4
Pm Pmo (1 + 2)3 .

(3.43)

Simply extrapolating back in time tells us that while today the universe appears to be matter-
dominated, at a redshift of (1+z) ~ 4000 and greater, the universe was radiation-dominated. As the
universe expanded and cooled, the background photons eventually were redshifted below the point
where they had enough energy to ionize a hydrogen atom (the well-known Rydberg: 13.6 V). So at
some point in the expansion, the hot plasma of ionized hydrogen that made up the early universe
should have cooled sufficiently for the protons and electrons to combine into neutral hydrogen without
getting immediately reionized by the energetic background photons.

To calculate the redshift of this recombination (technically it should be called combination, but the
widely-accepted term is recombination), we need to introduce the Saha equation. For any reversible
physical or chemical reaction in thermal equilibrium at a temperature 7" such as

A+ B = C + x(energy), (3.44)

where x is the amount of energy released in the reaction, the relative concentrations of the three
species (na,np,nc) can be determined by the Saha equation:

orkT 32 —
nang _ gagB TRL MmaMmp exp —-X . (3. 45)
nc gc h2 mgc kT

Here g; is the quantum degeneracy of the i** species and h is Plank’s constant (not the scaled Hubble
parameter). For ionized hydrogen nuclei (protons) and electrons, both of which are fermions with
half-integer spin, gy+ = 2 and g.- = 2 and when combined, the total number of spin combinations is
gro = 4. At the time of hydrogen recombination, it is safe to say that practically all of the primordial
helium (which has a higher ionization potential xg.) has already recombined with free electrons and
is thus ignorable in the Saha equation.
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While the process of recombination actually takes place over a finite period of time, for definiteness
we will define the instantaneous event of recombination as the point where ng+ = ngo: the number
densities of neutral and ionized hydrogen are equal. The total (free and bound) number density of
electrons today is related to the total number of baryons by

3

ne,tot(z = 0) = an,tot(z = O)a (3-46)

approximating mass fractions as X = 0.75 and Y = 0.25. Assuming conservation of electron number,
the total number density of electrons at a redshift (1 + z) was

Mestor (2) = (1 + 2)*netor (0)- (3.47)

The temperature of the cosmic background radiation changes linearly with redshift so

T(z) = (14 2)T(0). (3.48)
From the recombination criterion of ng+ = ngo, we have
1
ne,free(zrec) = ine,tot(zrec)- (349)

Plugging into equation (3.45), we can solve for the redshift of recombination:

Ne tot (0) s 2-2 (27kT(0)(1 + zrec)me \ *” —x
Ty U= < P2 ) op (ki%o)cl4-znm))' (3:50)

The only remaining unknown is n 4:(0), the total electron density in the universe today. For sim-
plicity, consider Q, = 1, which gives ne4:(0) = 8.5 X 10 % cm ™ and then a recombination redshift
(1 + zpec) ~ 1510. Taking the recent results of the WMAP satellite, we have €, = 0.047, and
(1 + zec) = 1090. Note that the temperature at recombination was 3000 K, giving a temperature
smaller by almost a factor of 100 than the temperature corresponding to the ionization energy of
hydrogen. The phase space factors strongly favor ionization.

Recall from Section 1.11 the derivation of the Jeans mass, the minimum mass necessary for an
overdense perturbation to collapse under its own gravity:

4 2\ 2
My=- )
73T (Gp>

Before recombination, the ionized hydrogen gas is opaque to the background photons, so the dominant
source of pressure in the gas comes from the photons which are relativistic particles, giving a very
large sound speed v, & ¢/ v/3 and thus large Jeans mass. After recombination, the sound speed drops
to that of an ideal gas of massive, non-relativistic particles with v; &~ 1 km/s. So the corresponding
Jeans mass also changes dramatically during recombination.

(L42) > (14 2e) Vs~ ——

V3
Mj ~ 10" M,

(142) < (14 2mec) : vs~1km/s
M; ~ 10°M, (3.51)
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It would appear that galaxies with My, ~ 10 —10'?M, and even clusters of galaxies with masses
up to Muys ~ 10 My, are too small to have collapsed before recombination. Objects with masses
smaller than the Jeans mass have imaginary growth exponents — they oscillate. This creates a major
problem in models without dark matter, with only photons and baryons. The photons and baryons
oscillate (see Fig. 3.14 below) but in the process the photons leak out of the perturbation. Letting
Arec) be the mean free path of a photon at recombination, photons will leak out of masses smaller
than the Silk mass,

number of scattering 1/2]°
Mg ~ | A _ - [density] ~ 10 Mg . 3.52

5 [ ec( events in t ~ 1/Hy ) ] [ v © (3:52)
The Silk mass is yet larger for low 2. This would seem to imply that perturbations on the scale
of galaxies could not have survived Silk damping prior to recombination. Zeldovich and his school
therefore favored a scenario in which clusters formed first, collapsing to “pancakes” which then
fragment into galaxies. But dark matter couples only gravitationall to the photons and baryons,
and dark matter perturbations continue to grow, albeit slowly, prior to recombination. Dark matter
obviates the need for the Zeldovich “top down” scenario.

3.5 From Fields to Objects: The Press-Schechter Recipe

Linear perturbation theory is quite useful for determining growth rates at early times, but what do we
do when a whole field of fluctuations transitions to non-linear growth, precipitating objects of various
sizes? Also, for a given wave-number, some large fluctuations will have had time to grow into objects
(e.g. galaxy, cluster, etc.), while others would still be in the early linear growth phases even today.
We want to understand how to make the transition from the linear problem of a superposition of
density wave perturbations in an otherwise uniform fluid to the fully non-linear description of discrete
objects of varying masses distributed throughout empty space. In the analysis that follows, we will
consider primarily the perturbations in the dark matter fields that grow through self-gravitation,
largely independent of the ionization of the baryons, i. e. we will ignore the effects of recombination.

Consider a density perturbation in the early universe with magnitude

5:pp_pu

Pu

This perturbation will grow according to the linear theory presented above, but at an amplitude J,.
non-linear effects become important. By convention d. is taken to be 1.69, which is the amplitude
a perturbation would have at the time of maximum expansion in and 2 = 1 universe if it had grow
with only the linear growth rate. Including the non-linear effects gives § = 972/16 — 1.

We assume the initial density perturbations in the early universe were like superpositions of
plane waves with wave-number £, random phase, and amplitude §. The probability distribution of
amplitudes ¢ is assumed to be Gaussian with a variance o2, and the density perturbations can have
d < 0 (underdense) or § > 0 (overdense). We will primarily be interested in the positive density
perturbations, since those are the ones that can form objects. Each value of k£ corresponds to a
typical volume and thus mass M determined by the initial background density p, ;. For each mass
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M there is a whole range of superposed random-phase modes with different values of § determined
by the normal distribution. Thus we can define the variance as a function of mass:

o*(M) = = <(%’0>2> : (3.53)

In the limit of small o2, the distribution of § looks like the Dirac delta-function centered on § = 0,
giving no perturbations at that mass scale. The larger the value of o2(M), the more structure will
evolve with mass M. There is a straightforward connection between the variance on scale M and the
power spectrum P(k) at wavenumber £,

P(k) < k" . (3.54)

From these initial conditions, we want to estimate the fraction of masses F'(M) which have § > 4,
and have thus collapsed to form bound objects by the present epoch. This fraction simply is the
integral of the upper tail of the normalized distribution function:

F(M) = W /5 Coo exp (%) 45 = % /q Coo e dg = %erfc(qc), (3.55)

[
V20(M)

The characteristic mass M* is that which corresponds to

where we have made the substitution ¢ = and erfc(x) is the complimentary error function.

1
a?(M*) = 553. (3.56)

The power-law relation of equation (3.54) gives a variance of

52/ M\ B/
o?(M) = AM~B+n/3 — 56 (M*) , (3.57)
giving further
M —(3+n)/n
gec = (M*) . (3.58)

At this point Press and Schechter equate two quantities which are clearly not the same thing,

fraction of fraction of universe
masses M | ~ | collapsed in objects . (3.59)
with § > 4, with masses > M

This ansatz (althought swindle might be more appropriate — see Fig. 3.8) allows one to compute the
fractional number density of collapsed objects with masses in the range (N, N + dM),

—p OF
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Figure 3.8: The Press-Schechter recipe starts with the probability
. that a cell on a predetermined grid is sufficiently dense to collapse.

But what about objects that span the cell boundaries?

where p/M is the number of possible objects with mass M per unit volume. Note the additional

negative sign in equation (3.60) that is needed because number densities are always non-negative and

F(M) is always non-increasing, so g—ﬂ is non-positive. More precisely,

n+3

OF 1 dq 0q. 1 [_(M)ﬁ

n+3

("‘6%?’)%(]?44)6‘ (3.61)

“or - oM~ vz T \ar

Combining equations (3.60) and (3.61), we get

N(M)dM:%(l—i-g)%(]\]\i)Gexp[—(ﬁ)6], (3.62)

which actually normalizes to

/ T N(M)dM = o (3.63)

and not to unity, as should be expected since all collapsed objects have less than infinite mass. This
factor of 1/2 is can be explained by invoking an argument based on the “excursion sets,” a topic
outside the scope of this discussion.

The P-S recipe assumes the instantaneous destruction of substructure when a new structure forms.
This is obviously not the case — galaxies continue to exist and flourish within clusters of galaxies.
Best estimates are that roughly 10% of the dark matter substructure survives the collapse of the
next generation in the hierarchy, but this is very uncertain. A much larger fraction of the baryonic
structure survives because the baryons form stars at the bottoms of the dark matter potential wells.

The shape of the N(M) distribution for the currently favored perturbaton spectrum differs sig-
nificantly from the shape of luminosity function for galaxies. The galaxy distribution cuts of more
sharply at the bright end and is shallower at the faint end. One might suppose that this is the result
of the crude approximations involved, but N-body simulations give results remarkably similar to the
P-S recipe. The distribution of baryon masses does indeed appear to be different. Much has been
made lately of the large number of low mass dark matter subsystems expected to persist in the dark
matter halos of galaxies. These far exceed the observed numbers of dwarf galaxies. Star formation
may have failed to occur in these sub-halos.

How does the critical mass M* change with time? From simple scaling comparisons, we see that
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for an overdense region in an expanding universe,

te ~ 62~

t o~ t®

§ ~ n?
M* o~ 8 (14 2)72 (3.64)

This seems to suggest that for high redshift, the characteristic collapsed mass should be relatively
small, but a number of very massive clusters of galaxies (large collapsed objects) have been found at
z ~ 0.8!

Voit has presented a simple approach to calculating M* His reasoning goes as follows:

e Use the currently observed values of N(M) to derive (M/M*).
e Extrapolate M* to some observed redshift z where we can evaluate exp(—M/M*).

e Use the temperature T" as the independent variable instead of the mass M. The densities of the
most recently collapsed objects vary as (1 + 2)3, so the radii of of these same objects (at fixed
mass) vary as (1+2)"!. The observed temperatures vary as M/R so one finds that T ~ (1 + z)
at fixed mass.

The somewhat surprising result that clusters of galaxies are no bigger today than they were at
z ~ 0.8 is resolved if one drops the assumption (common until the discovery of the acceleration of the
universe) that Q = 1. In low Omega universes, growth rapidly ceases once 2 deviates significantly
from unity.

3.6 Adding General Relativity to Cosmology

Using only the Newtonian law of gravity and the concepts of absolute time and space, we have been
able to construct a remarkably good model for the expansion of the universe and the formation of
structure from the collapse of initial density perturbations. However, Einstein showed that these
basic Newtonian concepts can break down in the regime of high velocities, high energy and mass
densities, and large distances where the finite speed of light becomes more important. Replacing
a world where space and time are absolute and objects travel in straight lines at constant velocity,
Einstein worked in a world where space and time were mixed together in a curved manifold. There
are no longer global inertial reference frames, but all objects still follow straight trajectories when
viewed in free-fall, under the influence of only gravity.

The mathematics behind Einstein’s general theory of relativity is elegant and sophisticated, and
would take up an entire course in itself. Fortunately, we can make a good deal of progress towards a
general relativistic cosmological model with the addition of just a couple key ideas:

e In the absence of non-gravitational forces, particles (including photons), follow curved paths
through space-time called geodesics, curves whose tangent vectors are “parallel transported.”
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e Mass density, energy density, and pressure, all contribute contribute the curvature of that space
time. gravity.

To accurately measure distances and motion in curved space-time, we need to use the metric
tensor g,,. The geodesic equations of motion can be determined entirely from the metric and its
first derivatives. The infinitesimal distance between two space-time events is given by

ds® = g, datdz”. (3.65)

Here we have used the implicit sum notation over repeated upper and lower indices. For the more
familiar special relativistic form of equation (3.65), the distance ds? is known as the Lorentz invariant
distance and is the same in all reference frames (hence “invariant”). The metric in these flat Lorentz
frames takes a special symbol 7,,. In cartesian coordinates,

-1 0 0 0
0 1 00
null(t7x7y7z) - 0 0 1 0 (366)
0 0 01
and in spherical coordinates,
-1 0 0 0
0 1 0 0
nuu (ta r, 0, ¢) - 0 0 7,.2 0 (367)
0 0 0 r’sin’6

Here and for the rest of our relativistic cosmology discussion, we adopt units where the speed of
light ¢ = 1. Then the proper time d7 (the time measured by a clock moving with the particle) for a
particle moving in flat space-time is given by

dr* = —ds® = dt* — d2® — dy* — d2* (3.68)

so for a photon with velocity dl/dt = 1, the proper time elapsed along its trajectory is zero in any
reference frame.

The metric for non-flat spacetimes is in general quite complicated. There are, however, several
simple metrics, the simplest perhaps being Schwarzschild metric for the vacuum outside a spherically
symmetric mass. It was derived by Karl Schwarzschild in 1916, just a year after Einstein’s original
formulation of General Relativity. And as we saw above with the introduction of Birkhoff’s theo-
rem, there are a great many astrophysical systems that are made up of spherically symmetric mass
distributions. For an interior total mass M, the Schwarzschild metric is

—(1 — 268 0 0 0
0Ty g g
G = 0 0 20 : (3.69)
0 0 0 r2sin®0

With this metric, the radial coordinate r should not be thought of as a conventional distance, but
it does have the property of giving the area of a section of space with constant r by

A = r*sin 0dOde. (3.70)
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do

doé

Figure 3.9: Calculating the infinitesimal distance ds between
two points on the surface of a sphere.

do

As mentioned above, the curvature described by the metric g,, is created by mass, energy, and
pressure, as incorporated in the stress-energy tensor, which can be described by a scalar density,
vector momentum, and 3 x 3 tensor of momentum flux:

I
T = [ pv V(p¥) ] ' (371

The upper left term is just the mass-energy density. The lower right term is the momentum density
flux. The off diagonal terms are the momentum density.

Specifying the stress-energy tensor is relatively easy. Computing the associated curvature is more
difficult. An FEinstein tensor G, is constructed from the metric tensor and its derivatives, It is
the general relativistic analog of the gravitational potential. The complications are hidden in the
construction of the Einstein tensor, which is related to the stress-energy tensor by the deceptively
simple field equations,

G = 81GT,, (3.72)

While Newtonian gravity, as described by the global gravitational potential has no real analogy in
general relativity, the field equations do reduce directly to Poisson’s equation V2® = 47Gp in the
non-relativistic limit. Since the mass density p is the leading non-relativistic term in the tensor
component Tpy, the Newtonian potential ® can be then compared to the leading order curvature
terms Rgy and ggg.

As suggested by the curvature singularity in the Schwarzschild metric at » = 0, it does not
represent a spatially homogeneous space, but rather has a physically distinguishable origin. Since
one of our central cosmological assumptions is the homogeneity of space, we would like a metric in
which all points in the space appear physically identical. The above forms of the Minkowski metric
leqns. (3.66) and (3.67)] are homogeneous, but also geometrically flat, so are of limited practical
interest. Better, consider the metric on the surface of a smooth sphere of radius R. Adopting the
standard spherical coordinates (6, ¢), we can see from Figure 3.9 that the infinitesimal spatial distance
dl is given by

dl* = R*(d6? + sin® 0d¢®) . (3.73)

We define the “longitudinal distance” coordinate x as the distance along a great circle from the
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pole so x = R and the spatial metric becomes
di? = dy? + R?sin? (%) d¢® . (3.74)

For a surface of positive curvature, like a sphere, the “angular diameter distance,” x, is defined such
that the angle subtended by an object, when multiplied by the angular diameter distance, gives the

physical size of the object. Thus

z = Rsin (%) (3.75)
and N
2 _ . 2(X 2
dxz® = cos (R> dx”. (3.76)
The spatial metric is then given by
dz?
P = ———— 2d¢?. 3.77
1—22/R? +zdg (3.77)

Homogeneous, two-dimensional spaces can also have negative curvature, although they are some-
what more difficult to visualize than the surface of a sphere. Often described as saddle geometries,
they have the same form of the spatial metric only with the following substitutions:

sin? — sinh?
2 2

X X

The 3-D analogue of the 2-sphere can be described with a combination of either one length and

two angles (longitudinal and transverse) or three angles and one constant radius of curvature. In
terms of three angles (x, 6, ¢) and a radius R, the metric looks like

di? = dy® + R? sin? (%) [d6? + sin? §do?). (3.79)

Combining with a time-like coordinate ¢ and defining a scale factor a(t) = R(t)/ Ry [with present-day
scale a(tg) = 1], we get the space-time metric of a homogeneous closed universe in terms of the
comoving angular diameter distance z:

dz?

2102 | 20712
Ty + 2°(df” + sin” 0d¢?) | . (3.80)

ds® = —dt* + a*(t) {

3.7 Cosmography

To begin our more in-depth discussion of cosmography (the study of distances in cosmology), let
us review the types of distance measurements already introduced. Different text books and papers
unfortunately use different conventions, but at this point there is nothing to do but make sure we
have our own terms well-defined and internally consistent.

e Y : comoving longitudinal distance
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e 7 : comoving transverse distance

a=(142)"!: scale factor

e D, = az : angular diameter distance

e Dy : luminosity distance

e R, : present-day radius of curvature

For a spatially homogeneous universe, the Einstein field equations reduce to the Friedmann equa-

tions, which govern the dynamics of the expansion. Formulated in terms of the scale factor a(t), the
Friedmann equations are

. AT 3p 1
=——q — —A 3.81
i 3 (p+ CQ> +3Aa, (3.81)
and 8r >
o= P g2 F S ~Aa?, (3.82)

3 R? 3
where p is the density, p the pressure. A the so-called “cosmological constant.” The pressure term rep-
resents a fundamental departure from Newtonian gravity, Einstein added the cosmological constant
to the curvature side of zero out the acceleration of the universe implicit implicit in the Friedmann
equations, since the universe was, at the time, thought to be static. Today something like the cos-
mological constant may appear on the stress-energy side of the equation, in the form of a vacuum
energy density

Recall the first law of thermodynamics, with the internal energy U in a volume V given by pcV:

dU + pdV = AVdp + EpdV +pdV = 0 = dp + (p + %) dv =0, (3.83)
c
Since the volume grows as V ~ a?,
av da
— =3— 3.84
V a Y ( )
so combining with equation (3.83),
dp p
Lr3(p+L) =0 3.85
am +3(p+ 5 (3.85)

Multiplying equation (3.81) by 2@ and using (3.85) to eliminate the pressure term, we have

d 2
2464 = S?WG,O (Qpad + d—Za%) + gAaa. (3.86)

Integrating equation (3.86) gives
8 1
0’ = ?WGpa2 + gAa2 -k . (3.87)

which looks much like equation (3.82) except that the latter involves the radius of curvature of the
universe, Ry, while the former gives us no information about the scale on which the universe is curved.
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Both the matter density and radiation density decrease with the expansion (pmatter ~ @~%; prag ~
a™*), but the vacuum energy density remains constant (py ~ a°), hence the term cosmological
constant. In the limit where the expansion is dominated by A, equation (3.87) becomes

) A
i~ \/;a, (3.88)
a(t) ~ exp (\/gt) . (3.89)

This is thought to be the behavior of the very early universe during the inflationary period and may
also be the ultimate fate of the expansion if there is in fact a non-zero A today.

giving infinite, exponential expansion

At early times, yet after the completion of the inflationary period, the universe can be described
as a gas of photons and ultra-relativistic massive particles. For such a gas, the equation of state is

c
p= b (3.90)
so equation (3.85) gives
dpra d
Prad _ 4% (3.91)
Prad a

consistent with the relation presented above (praq ~ a=*). For a universe with zero curvature and
negligible A, equations (3.87) and (3.91) give

A\’ 1 (pma\’ 87
Z) =2 (2 = — GPrad, 3.92
<a> 4 (prad> 3 Prad ( )
which can be integrated to give
3
rad(t) = ——t72. 3.93
Prad(t) 397Cr ( )

Note the similarity to the expression for matter-dominated expansion in equation (3.22).
Recall the cosmological density parameter €2y introduced in Section 3.1:

_ 81Gpo
T 3HZ -

Similarly, we can define multiple density parameters for each of the “ingredients” of the universe:
matter, radiation, and a cosmological constant. Again using the subscript 0 to indicate present-day
values, we have

SWGme
QmO 3H§ ] (3.943)
87TG:01"0
Qo = , 3.94b
0 3H? (3.94D)
A
QAO = (394C)

3HZ
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With a time-varying value of the Hubble parameter H(t) = a/a, equation (3.87) becomes

HXmo  H2, 2
G2 = 02Tmo |y TR0 | p2ey o2 O (3.95)

a a? R%Y

From here, it is easy to derive an expression for the present-day (ay = 1) geometry of the universe,
in terms of the curvature radius Ry:

(¢/Ho)®
1 — Qo — Qo — Qa0

FR) = (3.96)
If the ’s add up to unity, we get a flat universe with infinite radius of curvature. The departure
from flatness is sometimes described by (2, the “curvature density parameter”:

Q=1-) (3.97)

We can now apply all the above results from the Friedmann equation to the problem of measuring
distances in an expanding metric. It is often easiest to think of infinitesimal distance changes over
length scales that are small compared to the curvature and time scales that are short compared to
the age of the universe. The comowving longitudinal distance is a measure of how long a distant,
ancient meter stick would appear today. This is longer than the distance the photon itself would
have measured along its path with an odometer because the space that the photon moved through
a billion years ago has since expanded and moved further away from the observer. Because of this,
it is sometimes called the “tachyon distance,” the distance that would be with an odometer by a
particle moving with infinite velocity. From equations (3.80) and (3.76), the comoving longitudinal
meter stick is given by

cdt —cdz
dy = ——=c(l+2)dt=—
T e A G P
—cd
= ;IOZ[QmO(l +2)3 4+ Quo(1 + 2)* + Qo + Qo (1 + 2)?] 712 (3.98)

and then the total comoving longitudinal distance between two events at redshifts z; and zj is
22
Xi2 = / dx. (3.99)
21

Another distance measurement that is very important in observational cosmology is the luminosity
distance Dy, which is the apparent distance to an object of a given bolometric luminosity Ly, and
observed fluc fi, assuming a Newtonian inverse-square law for flux traveling through a flat, static

space:
Lbol

= 1
fun = 1 (3.100)

The angular diameter distance is also defined with respect to the appearance of an object in flat
space. An object of proper size [ at an angular diameter distance D4 will appear to subtend an angle
in the sky of d¢ = [/D 4. As is shown in Figure 3.10, the curvature of light rays due to the lensing by
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<§ Figure 3.10: An object subtending an angle d¢ will
do (DAvmaX dcp) have a different physical size at different redshifts.
The angular diameter distance D, transforms an-

Z gle into length.

intervening mass can cause D4 to actually decrease with increasing redshift. The luminosity distance
is related to the angular diameter distance D4 and the comoving angular distance z through
D A T

Dbl s (3.101)

Dy

For the case of a closed, matter-dominated universe (2, = Q5 = 0,,, > 1), analytic expressions
exist for the comoving distances x and x and the volume element dV':

B 2 (14 Qo2 L 1 1/2
X = HO(QmO — 1)1/2 [tan <m) — tan m y (3102)

_ 2c

sometimes called the Mattig formula. The comoving volume element dV for a section of solid angle
df} is

T (D02 + (Do — 2)((Qnoz + 1)/2 = 1], (3.103)

. 1 1 2x
V = dQR2sin? [ X =dOR} | = — ~cos = 104
d dQ R sin <R0> dx = dQQR; (2 2cosRo)dX (3.104)

which integrates to give a comoving volume for a cone extending away from the observer a distance
R (x 1. 2x R3 x x

V=d0=2 & — —sin= ) =dQ= (sin ! =~ — =-4/1— (z/R?) ). 3.105

5 (Ro 5 Sin o 5 | sin 7R (z/R%) ( )

3.8 Cosmological Parameters

In many of the formulae above, we have repeatedly referred to various cosmological parameters like
the Hubble “constant” H, and the density parameters 2,0, {20, and §25¢. Since we understand how
the different densities evolve with redshift, the present-day values of the (2’s is enough to extrapolate
backwards in time to give the density and thus dynamics of the universe at an earlier time (higher
redshift). Without knowing the values of these cosmological parameters today, it is impossible to
quantify the distance to objects or events in the sky. However, precisely because of this relation
between distance and density and the Hubble constant, we have at our disposal a number of interesting
observational tools to measure the cosmological parameters.

For example, universe models with a non-zero cosmological constant have recently become fash-
ionable and eventhough nobody understands the underlying physics, we can nonetheless measure its
value and how it affects the dynamics of the universe. Equation (3.94a) suggests that we can define

a vacuum energy density p as
A

=g (3.106)
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Then from the first law of thermodynamics [eqn. (3.83)],

pac2dV + ppydV =0, (3.107)
giving the equation of state for the pure vacuum:
PA
Pa=—"5" (3.108)

This unusual equation of state suggests peculiar, “anti-gravitational” forces that push the universe
apart. The Friedmann equation for a matter plus vacuum universe can be written

4
i = —gGa(pm — 3p4). (3.109)

Since the matter density falls off as a2 with the expansion, any non-zero vacuum energy will even-

tually dominate, giving an accelerating universe with ¢ > 0. Since, until recently, the universe has

been thought to be decelerating, the conventional parameter used to measure such an effect is called

the deceleration parameter qq:

aa QmO

=—|—=)=—7— Mo 3.110

do ( 02 ) B A0 ( )

For certain values of €2, and {25, there are actually static solutions where ¢ = @ = 0. In fact, the

desire to find such static solutions to the Friedmann equation is what originally motivated Einstein
to introduce the cosmological constant in the first place.

In 1970, Sandage (Physics Today, 23[2], 34) famously described cosmology as “a search for two
parameters:” Hy and go. Today, along with Hy and go, observational cosmologists are trying (and in
many cases, quite successfully) to measure the different critical density factors 2,0, 20, Qa0, and the
matter density in “normal,” baryonic matter 4. In addition to the density factors (the “ingredients”
of the universe), we would also like to know the amplitude of the initial density perturbations and
the spectral index for the perturbation distribution (the “recipe” building the universe into galaxies
and large-scale structure).

But then again, Sandage may have had it right after all. His two parameters are (more or less)
the time scale of the universe and its radius of curvature. One might argue that all of the other
“cosmological” parameters are mere physics, in the same way that the internal composition of a star
will affect its lifetime through nuclear reaction rates and opacities and the like. While this physics is
certainly interesting, it is not fundamentally cosmological.

Some of the classical tests for determining these parameters are described below:
Angular diameter-redshift test

Since the angular diameter D4 is a function of (Hy, Qm0, Qa0), by measuring the angular size d¢
on the sky of a collection of objects of known physical size at different redshifts, we can fit D4(z) to
the best cosmological model parameters. For a “standard meter stick” of length L at redshift (z+ 1),
the angular size in the sky is

L
Da(Ho, Qmos 0, 2)

Now all we need are good cosmological meter sticks. Good meter sticks can be of all different lengths,
as long as we can determine their lengths using other observational features. Some possibilities are:

dp(z +1) = (3.111)
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e Double-lobe radio galaxies: the physical size of the radio jets is related to their velocity and
emission.

e The size of elliptical galaxy and galaxy cluster cores is often related to the velocity dispersion
of the system or the surface brightness of the object.

e The image separation of a gravitational lens. In this case, we would measure the Einstein
radius: 2
0" s
Op = dmr——=
as introduced in Section 2.2. While we were not careful there to specify what sort of distance
was meant by Dg and Dpg, with hindsight these can be seen to be angular diameter distances

from the source to the observer and from the lens to the source.

Number-redshift test

By counting up the total number of objects of a given brightness as a function of redshift, we can
measure the comoving volume V' (£2,,,€24). The major problem with this method is that, while the
total mass within a comoving volume element dV will remain roughly constant with the expansion
of the universe, the actual objects that fill this region will evolve and also merge. This means
that neither the total number of objects nor their intrinsic brightness is constant with redshift. The
Hubble Deep Field program (since superceded by the Ultradeep Field) detected about 100-1000 times
more high-redshift galaxies than predicted by a no-evolution model. So while not being an ideal
method for independently measuring 2,0 and 259, the number-redshift test, along with a decent
cosmological model, can give a great deal of information about galaxy evolution and hierarchical
structure formation.

Lumianosity-redshift test

Figure 3.11: If the pupil of the observer at red-
shift zero subtends a solid angle df) as seen from
the source, the fraction of the total luminosity re-
comoving angular ceived by the observer is d2/4m. A square one
diameter distance x unit length on a side subtends a solid angle 1 unit
length/4mz?, where z is the co-moving angular di-
ameter distance.

As defined in equation (3.100), the observed bolometric flux from a distant object is proportional
to the inverse square of the luminosity distance, or alternatively

. Lbol(emit) 1 2
fbol(ObS) = A 1+ 2 . (3112)

Here the comoving transverse distance x is used to give the surface area of a distant sphere sur-
rounding the source (see Fig. 3.11), thus the solid angle factor of the observer. Since flux is measured
in units of [energy/area/time|, two factors of 1/(1+ z) are required to account for the photon redshift
reducing the energy of any given photon and the time dilation of a receding source emitting fewer
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4 4d,=0

4,>0

m Figure 3.12: Apparent magnitude versus redshift

1 for the different universes: decelerating, coasting,
T and accelerating.

log (1+2)

Figure 3.13: Constraints on the matter density and the vacuum energy
density as determined from supernovae. The most probable values of
Qu and Q, lie inside the ellipse. The location of the first accoustic
peak in the CMB gives a second ellipse, elongated perpendicular to the
one shown.

Qy

photons per second as measured by the observer. The central problem for the luminosity-redshift
test is finding a “standard candle,” an object of known (or at least scalable) intrinsic luminosity Ly
Then by plotting the observed magnitude m as a function of redshift, we can fit the data to different
values of the deceleration parameter gy (see Fig. 3.12). In the 60s and 70s the most promising stan-
dard candle was the population of brightest cluster elliptical galaxies, which were grouped around a
single absolute magnitude with a variance of o ~ 0.3 — 0.45 mag. Just like the number-redshift test,
the problem with the elliptical galaxies was that of evolution, introducing systematic errors at higher
redshifts.

Today, by far the most successful form of the luminosity-redshift test has been the use of type-Ia
supernovae, which have a strong correlation between the time for the peak emission to fade and the
intrinsic luminosity. Here the trick is just to find these supernovae at large redshifts shortly after
they explode, and then follow them over a period of weeks or months to measure their waxing and
waning. The results of many such observations suggest that the universe is in fact expanding at an
accelerating rate with ¢o < 0, consistent with a non-zero cosmological constant. Since the deceleration
parameter is a function of 2, and €,,, the luminosity-redshift test is actually most sensitive to a
linear combination of the two density parameters, as can be seen in the “error ellipse” in Figure 3.13.

Recent observations by Riess and collaborators have pushed type Ia supernova observations out
to z ~ 1.5 at which epoch the universe was still decelerating. This allows measurement of the third
derivative of the expansion parameter a which when rendered dimensionless with factors of @ and a
gives a “cosmic jerk” parameter. The measured value of the cosmic jerk is consistent a flat universe
presently dominated by A.



26 CHAPTER 3. COSMOLOGY

3.9 Density perturbations in an expanding universe: Jeans’s
approach revisited

As we showed in Section 1.11 for a static space-time, small density perturbations in an otherwise
uniform fluid will either grow through gravitational instability or oscillate like acoustic waves held
up from collapsing by thermal and radiation pressure. However, unlike in Section 1.11, now we want
to investigate the growth of perturbations in an ezpanding fluid. Recall that the Jeans’ length \;
dependence on the sound velocity v, in the gas:

2

™
. 3.113
e (3.113)

2 =

As the universe expands adiabatically, the fluid is dominated by radiation pressure at first, giving
the sound speed for a relativistic gas: v?> = ¢?/3. During this period, the corresponding Jeans length
is very large, causing most modes to undergo accoustic oscillation. Only when the gas cools enough
for the hydrogen ions to combine with the background electrons and form neutral atomic hydrogen
(transparent to the background radiation) does the pressure become gas-dominated, dramatically
lowering the sound speed and thus allowing the modes to grow under gravitational collapse.

Following the same general approach of Section 1.11, we begin by writing the fluid equations for
a gas moving with a velocity Vv, pressure p, density p, and gravitational potential ®. For Eulerian
space with fixed coordinates, the mass continuity equation is

a —
P LY (p¥) =0, (3.114)
ot
the Euler equation
av+(* V)V =-Vd '$ (3.115)
R V vV = — _— .
at p p7
and the Poisson equation is
V2@, = 47Gp;. (3.116)

Unlike our earlier approach, where the average velocity was taken to be zero, for the expanding
universe we must take into consideration the bulk velocity of the fluid according to Hubble’s law
v = HX. This formulation of the fluid problem strongly suggests the use of comoving Lagrangian
coordinates. In comoving coordinates, the time derivative can be re-written as

d 0 -
~ - 4 v-V. A1
7 8t+v v (3.117)

Then the continuity equation for a Hubble flow in three dimensions becomes

d —
P = _pV .= —3Hp (3.118)
dt
and Euler’s equation can be written
dv 1o >
— =——Vp—-Vo. 3.119
o S Vp (3.119)
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Just as with the Eulerian formalism, we will consider small deviations from the steady-state
equilibrium solutions to the fluid equations 3.118 and 3.119. For small perturbation §, we have the
following expressions for the density, velocity, pressure, and potential of the fluid:

V(X, 1) Vo(X) + 01 (X, t) (3.120a)
DX, t) = Po(X) + 0P, (X,1). (3.120d)
Then the perturbation terms give
d 5 —
2 (_;;) = -V 6%, (3.121)
dt \ po
d - ) -
L (59) = (6% - V)V = — L _ V5, (3.122)
dt Po
and
V25® = 4nGép. (3.123)
In comoving (Lagrangian) coordinates,
X
r = — 124
r @)’ (3.124a)
dr
i = — 3.124b
are the comoving positions and velocities, related to the “absolute” position X and v by
0X = Foa + adr (3.125)
and . 4 .
X a r
V= — =F— +a—. 3.126
Voo T T T (3.126)
The comoving gradient V. is given by
V=-V,=-—. 3.127
a a Ot ( )
Then equation (3.122) becomes
d a 1 = 1=
—tu+2-u=—-——-Vip— =V 3.128
dtu+ L poaQV D a2V ( )
and taking the comoving divergence,
d = a, = 1 1
—(Ve-d)+2-(V,- i) = ———V2p — —V25d. 12
dt(v u) + a(V u) o VZop aQVC(S (3.129)

G, i=-2 (5—p) : (3.130)
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and assuming adiabatic expansion, we have
5p = c26p. (3.131)

Bringing it all together, we get a second-order wave equation

dz (6p ad (dp 90 0P
— | — 2—— | — ) = — 44 . 132
72 <p0> + T (,00) csVCpO +4nGop (3.132)

Just as in the case of a static fluid undergoing gravitational collapse, we can look at the wave
equation in the Fourier domain. For single-mode perturbations with amplitude A and comoving
wave-vector k., the density fluctuations can be written as

J —
%P — Aer, (3.133)
Po
Then the dispersion relation from equation (3.132) is
d? ad
—A+2-—A=A(4 — a’k2cl). 134
At 2o (AnGpo — a“kZcs) (3.134)

Setting & = 0 for a static universe, we recover the Jeans equation with \; ~ c,(m/Gpo)*/?.

3.10 Growth of perturbations in the early universe

At early times after the big bang, the temperature of the universe was high enough for the leptons and
baryons to be ultra-relativistic, behaving with an equation of state similar to that of pure radiation:
p = ¢’p/3. However, since the massive particles do not lose energy with redshift like the photons
do, the dynamics of the expansion do discriminate between matter-dominated (€2, = 1,9, = 0) and
radiation-dominated (2, = 0,2, = 1) universes. For the Einstein-deSitter cosmology (2, = 1,2, =

0,94 = 0), recall
21 1\
= —— t = .
3t’ (67er)

= A > \;) will grow according to

ISHIESY

[ary

Then large-scale perturbations (k~

d? 4 d 2

— A+ ——A—-—A=0. 1
2" a3t T (3.135)
Trying solutions of the form A oc t™ gives
4 2
n(n—1)+ 3= 0, (3.136)

with solutions n = (2/3,—1). The negative solution gives a decaying mode, while the n = 2/3
solution corresponds to perturbations growing with the same rate as the background expansion:

ANt2/3NL

) 3.137
1+ 2 ( )
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For an empty or very low density universe, a/a ~ ¢t~' and the power-law growth solutions have
n = (0, —1), in other words, no growth. In general, there will be positive growth when €, ~ 1 and
stasis when €, ~ 0. For the case of a small density parameter at the current epoch (2,0 < 1), the
perturbation growth stopped at a redshift of

1
l+zr —. (3.138)
m0
For the case of a flat universe with a cosmological constant and €2, + 259 = 1, growth stopped
around a redshift of

142 (3.139)

/3"
m0
For a fluid in hydrostatic equilibrium (no pressure gradients), the peculiar velocities evolve according

to
—V. P, (3.140)

so for a uniform density distribution (6CCI> = (), peculiar velocities decrease with the expansion:

u~a 2.

In the case where the density gradient is not zero, we can write the peculiar velocity as

=) +uy, (3.141)

where 1 is the component of the velocity parallel to ﬁcép. In this form, we see that velocity
perturbations can grow in the direction of density perturbations, while the perpendicular components
are damped. Since the curl of the gradient of the density field is zero, the overall vorticity of the

velocity field decays with expansion proportional to a™!.

Returning to a general fluid of radiation and relativistic particles, we write down the modified
relativistic continuity, Euler, and Poisson equations:

%JFV [(,0—1—%) \7"] =0, (3.142)
(p + %) % =- (p + %) Vo — VP, (3.143)

and
V20 = 4rG (p + %) : (3.144)

Note how the hydrodynamic (p + p/c?) and gravitational (p + 3p/c®) terms are different with the
addition of relativistic corrections. The resulting wave equation in Fourier space is

d2 ad (327TG/)()

ZA4+2° A=A

e o — a%fci) : (3.145)

Neglecting the pressure due to the massive particles, the sound speed c¢; is given by

Op
T 1 ra
C2 — (aT)rad _ —C2$ (3146)

’ (g_p)rad + (g_g)mat - 3 Prad + %pmat.
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ED Figure 3.14: The growth of the Jeans mass as a function of
t CD time. Also Shown is the growth of two perturbations of dif-

CD ferent masses. They grow only when their masses are larger

than the Jeans mass, oscillating when not.
Jeans mass

For a radiation dominated expansion, the dynamics are similar to those calculated for the Einstein-
deSitter universe:

a
- = — 3.14
- (3.147a)

3 1/2
= (3% Gp) | (3.147b)

Again looking for solutions of the form A o " gives n = (1, —1), or growing modes with

A~t~a’ (3.148)
In the radiation era, the Jeans mass grows in time as
My ~ X pray ~ %2, (3.149)

with all smaller perturbations undergoing stable oscillations before the period of recombination, when
the sound speed falls off dramatically, leading to the unstable collapse of all fluctuations larger than
the suddenly reduced Jeans mass (see Fig. 3.14). In fact, as we saw in Section 3.3, a more careful
treatment of stable oscillations in the radiation era shows that perturbations with masses smaller
than the Silk mass (Mg ~ 10'2M) are actually damped out before recombination, leaving only very
large mass perturbations to collapse. Furthermore, from the fluctuations in the cosmic microwave
background radiation, we have direct measurements of the amplitude of radiation and baryonic
density fluctuations at the time of recombination, and these amplitudes are not large enough to have
seeded the structures observed today. So then where do the typical galaxies with Mg, < Mg come
from?

Zeldovich (1967, 1970) studied perturbations of the form

0 Pmat _ § 0 Prad
Pmat B 4 Prad ’
called adiabatic perturbations, as a possible solution to the galaxy problem. This “pancake,” or
“top-down” scenario seemed to predict more small-mass objects, but they generally do not form

early enough, and there was already significant observational evidence for galaxies at large redshifts.
Another option was isothermal perturbations, with

(3.150)

dpra
OPrad _ ), (3.151)
Prad
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log A

—AD
—Ar
—AB

log a

Figure 3.15: The growth of perturbation amplitude as a function of expansion factor a. The radi-
ation and baryonic components cease to grow when the perturbation passes through the horizon.
The dark matter component grows more rapidly once radiation no longer dominates. The baryonic
perturbations grow rapidly after recombination.

but these provided little more hope than the adiabatic approach.

The current explanation for the source of galactic-size mass perturbations is based on dark matter.
Assuming an initial perturbation power spectrum that is identical for radiation, baryons, and dark
matter, fluctuations will grow according to equation (3.148) with the expansion until the horizon is
comparable to the mode wavelength, at which point the baryonic and radiation perturbations undergo
Silk damping. But by virtue of its being transparent, the dark matter experiences no such pressure
forces, and dark matter perturbations keep on growing through recombination. After recombination,
with little or no radiation pressure, the baryonic matter falls into the potential wells formed by the
dark matter fluctuations (see Fig. 3.15). The smaller masses collapse first to form galaxies, then
larger masses merge to form hierarchical structures, including the super-clusters that we see today.

3.11 Statistical measures of cosmic structure

Recall our general distinction in cosmological structure formation between field perturbations and
discrete objects. Roughly speaking, if the density of the region in question is p and the average
density of the background universe is p,, then these approaches are categorized by

m2 <1 fields
Pu
I’ >m2 objects. (3.152)
Pu 16

In this section we are going to be concerned primarily with objects and their statistical distribution
in space. These statistics are usually expressed in one of the following forms:

e counts in cells (1-point correlation function)
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2
-r -7
1,/ Figure 3.16: The spatial correlation coefficient £(r) measures
the extra probability of finding a galaxy in volume dV, given
R a galaxy in volume dV;.

e 2-point correlation function

e power spectrum (Fourier transform of the 2-point correlation function)

The one-point correlation function is simply the probability of finding a galaxy (or quasar or
cluster or any given type of object) within a small volume element dV. If the average number density
of that type of object is Ny, then the probability is just P(dV) = NodV .

The two-point correlation function is the probability of finding an object in a volume dV; and also
another object in a volume dV,, where the two volume elements are separated by r. For an average
number density Ny, this distribution can be written

dNpair(F) = Ny dVidVa[1 + £(5)], (3.153)

where £(T) is called the spatial correlation function. For isotropic distributions, £(¥) = &(r). While
these relations have been defined for discrete objects, it is conceptually straightforward to define a
correlation function for continuous distributions as well. For example, with a density field defined by

p(®) = ml1 + AR)] (3.154)
the probability of matching “pairs” with a separation ¥ (see Fig. 3.16) is given by
ANeont (F) = pg[l + AR)][1 + AR + 1)), (3.155)

giving a spatial correlation function
1
¢(F) = (ARAR+T))z = / AR)AR + T)d°%. (3.156)

Since, from an observer’s point of view, the sky is two-dimensional, it also makes sense to define an
angular correlation function. Replacing the volume elements with solid angles d€2; and df2; and the
density with ny the angular correlation function w() is defined by

- -

dNpair (0) = n2dQ1dQ[1 + w(6)]. (3.157)

Typically, w(6) is smaller in magnitude than &(F) because foreground and background dilution of
sources makes the universe look more uniform when projected onto the two-dimensional surface of
the visible sky.

The last third of the 20th century saw increasingly large samples of galaxies used for measurement
of the correlation function (and the power spectrum). The counts of Shane and Wirtaanen gave a
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reliable angular correlation function. Redshift surveys carried out one galaxy at a time produced
thousands of redshifts, giving spatial correlation functions. Surveys carried out using hundreds
of optical fibers strategically positioned in the focal plane of the telescope have produced tens of
thousands of redshifts (at Las Campanas) and hundreds of thousands of redshifts (at the Anglo-
Australian Telescope and with the Sloan Sky Survey Telescope) with a cumulative total that will
soon pass the million galaxy mark.

To good approximation, the galaxy-galaxy spatial correlation function is a power law,

r

£(r) = (—) - : (3.158)

To

with scale length 7y ~ 5h~'Mpc. A straightforward consequence of this power law is that if you see a
galaxy, any nearby comparable galaxy is probably at the same redshift. As one goes to more distant
galaxies the angle governing the definition of “nearby” becomes smaller. With the largest surveys
of galaxies, it has been possible to establish deviations from the above power law. In particular the
2-point correlation function shows an inflection at the transition between pairs of galaxies that are
members of the same virialized group and galaxies that are memebers of different but correlated
groups.

A useful alternative to the 2-point correlation function is the power spectrum, which can be
compared readily with analytic theories of structure formation, as well as the results from N-body
computer simulations. From a technical standpoint it has the advantage that it may be calculated
more robustly, particularly at large scales. Using the deviation from uniform density A(X) from
equation (3.154), we can express it and its Fourier pair A(k) as

"l
|

AR) = / AK)e * %Pk
AK) = A(R)e** Pz, (3.159)
Then equation (3.156) can be written

€ = — / AR)A(R + F)dR

= G / |A(K) 2™ F k. (3.160)

In the last line we have used the orthogonality relation

1 e e o L.
W/ez(k—‘”"‘di”kz d3(k — k). (3.161)
m

Then the power spectrum is defined by

P(k) = |A(K)|%. (3.162)



34 CHAPTER 3. COSMOLOGY

Figure 3.17: A reference volume V over which the power spectrum is computed.

The power spectrum and the 2-point spatial correlation function are a Fourier pairs, each the Fourier
transform of the other. Assuming isotropy and averaging over angle, the correlation function is given

N ) = 5 / P(k) (Smlffr)> K2dk, (3.163)

where the factor sin(kr)/kr, often called the window function, shows that the longer wavelengths
with kr < 1 make the dominant contribution to the correlation function.

3.12 Cosmic Microwave Background Fluctuations

Recall from our discussion of cosmological perturbation theory the basic sequence of matter evolution
in the early universe:

e Fluctuations with M > M grizon SrOw;

e Fluctuations with M < Mygrizon are schizophrenic, with the dark matter component growing
slowly while the photon-baryon fluid oscillates;

e regions with (dark matter) p,, > p, grow faster than when radiation dominates;

e post-recombination, the baryons fall into the gravitational potential wells formed by dark matter
structure.

To model the stasis/growth phase, we need to include four fluid components (dark matter,
baryons, photons, and neutrinos) interacting under gravity and electromagnetic forces for the photons
and baryons. To constrain these models, we have direct observations of the baryon-baryon and dark
matter-dark matter correlation functions &, and &4 today as well as the photon-photon correlation
function &, from the recombination epoch of 2. /= 1100. & is easily observed with galaxy surveys
and £44 can be inferred (at least in principle) from weak lensing. They are related with the “bias”
parameter b:

= b*Eaa - (3.164)
The idea behind biasing is illustrated in Figure 3.18. Galaxy sized perturbations will grow more or
less rapidly depending upon whether they are embedded in large scale perturbations with positive
or negative amplitudes. It would be a surprise of the properties of galaxies were the same in larger
regions that were more and less dense. Remarkably it has proven difficult to identify major differences
between the galaxies in clusters and voids.

The dark matter can be correlated with the baryonic matter with a cross-correlation function &4
defined in an analogous manner to equations (3.153) and (3.156). The “correlation” parameter r is
determined from

&b = 1044, (3.165)
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where a value of r = 1 indicates non-stochastic biasing.

Figure 3.18: Three small scale (galaxy sized) positive dark

matter perturbations embedded within a larger scale (cluster
* sized) negative perturbation. The dashed line indicates the
critical density. Only two of the three perturbations can
collapse. They will find themselves in a large scale region
relatively devoid of galaxies.

Figure 3.19: A schematic of the power spectrum as observed
from the CMB (at low wavenumber) with COBE and from
P galaxies (at high wavenumber). More recent CMB results
‘ extend to higher wavenumbers and now overlap with the
/ /\ galaxy results. The results are consistent with an initial
Harrison-Zeldovich, constant curvature spectrum of pertur-

: : : — bations with n = 1. The CMB and the galaxies are observed

K at very different epochs. Either one must be evolved forward
or the other backward.

The power spectrum corresponding of the photon anisotropies at recombination gives an remark-
able snapshot of the early universe. Since the temperature fluctuations in the background radiation
are straightforwardly related to the spatial density and velocity fluctuations in the baryon-dark
matter fluid, cosmic microwave background (CMB) measurements serve as a direct statistical deter-
mination of the initial conditions for the calculations of perturbation growth. In the past ten years,
unprecedented accuracy has been achieved in CMB observations and the future promises to give even
better precision on finer and finer scales. The basic observable that all these experiments are trying
to measure is the power spectrum P(k) in the photon temperature anisotropy. Figure 3.19 shows
the dark matter power spectrum P(k) as obtained from the CMB (at low wavenumber) and z ~ 0
galaxies (at large wavenumber. Note that (to first order) there are no wiggles in the dark matter
power spectrum — these are present only photon-baryon fluid. The comoving wavenumber £ in given
in units of Mpc~!.

While the CMB was discovered in 1965, its anisotropies have only been measurable since the 1990s,
starting with the COBE satellite, proceeding through a series of groundbased experiments and balloon
experiments to the Wilkinson Microwave Anisotropy Probe (WMAB). The fluctuations are very small
— of order 1075 times the CMB temperature, and require remarkably stable instruments to measure
them. The technical advances making these measurements possible include HEMT amplifiers at 30
GHz and lower frequencies and cryogenic bolometric arrays at 100 GHz and higher frequencies.

Considering the direct observable of the blackbody temperature as a function of angular position
in the sky ©(0, ¢), we can decompose the signal into spherical harmonic modes defined by

In the limit of large [, the variance of the perturbation field is
1
2= d’l 1
7= G / Ci, (3.167)
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851

<| (I+J)C|>]:12K Figure 3.20: A schematic of the cosmic microwave
2m background spectrum. The COBE satellite mea-

COLBE sured the spectrum in the linear regime.
30

in “Gravitational Lensing: Recent Progress
and Future Goals” but most easily found at
http://www.arxiv.org/pdf/astro-ph/9909301.
The two vertical lines mark the beginning and end
of recombination. The circles represent perturba-
tions on increasingly large scales toward the top
of the figure. The diagonal line marks the epoch
at which the horizon passes through perturbations
of a given scale. All of the perturbations have
9 a positive density contrast at the moment they

Figure 3.21: This figure has been adapted from
N Lineweaver’s paper “CMBology,” published

++ pass through the horizon, and all of continue to

grow more positive after horizon crossing. Though
the density of the photon-baryon fluid oscillates,
the density perturbation is always positive, with

@@ amplitude indicated by the number of + signs.

@@@ A similar diagram can be drawn for negative
redshift perturbations.
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so for this reason, the temperature power spectrum is usually plotted in terms of Ay, where

I(1+1)

A2 = CT?, (3.168)

Figure 3.20 shows this power spectrum as a function of multipole moment /. The scale of micro-
Kelvins shows just how impressive the precision of these measurements is.

The most prominent feature in the CMB power spectrum is the maximum near [ = 200, called
the “first acoustic peak.” This peak can be understood qualitatively by estimating the distance a
sound wave could travel in the early photon-baryon fluid from the time of the big bang to the era
of recombination. For a flat universe, this appears at [ =~ 200, with a corresponding angular scale of
1.8°. This factors of 3-10 larger than the perturbations that give rise to today’s clusters of galaxies.

In addition to the first acoustic peak, there are also a number of significant harmonic acoustic
peaks at higher wave numbers. These can be understood with the help of a Lineweaver diagram
(shown in Fig. 3.21), a schematic that tracks the onset of perturbation growth as the causal horizon
expands in time. As the horizon becomes larger than a perturbation the perturbations continue
to collapse, but the radiation pressure of the photon fluid resists the collapse, causing acoustic
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oscillations in the photon-baryon fluid. The dark matter does not interact with the photon-baryon
fluid, except gravitationally, and continues to collapse. The phase of the photon-baryon oscillations
at the time of recombination determines how they affect the CMB spectrum. Those wavelengths that
are at maximum or minimum densities contribute maxmimally to the power. Those modes observed
at the peak velocity phase of their harmonic oscillations add a smaller, out of phase contribution to
the CMB power.

The following features in the Lineweaver diagram are noteable:

bullet The pertubations at scale ¢ are at maximum compression at recombination. The first peak in
the CMB power spectrum is seen at this scale.

The perturbations at scale a reach maximum compression and re-expand. They are at maximum
re-expansion at recombination. The second peak in the CMB power spectrum is seen at this
scale.

btdilétt The perturbations at scale b reach maximum compression and re-expand. They have maxi-
mum outward velocity at recombination. They produce a “doppler” peak in the CMB power
spectrum that partially fills in the valley between the first and second peaks

bullet The perturbations at scale d have maximum inward velocity at recombination. They produces
a “doppler” peak in the CMB power spectrum shortward of the first peak that adds a shoulder
to it.

bullet At scale b the baryon-photon fluid is at maximum compression. While most of the binding
energy comes from the dark matter, the baryons contribute, causing the compression to be larger
than it would have been had there been no baryons. The opposite is true at scale d. Hence
odd-numbered peaks are stronger and even numbered peaks are weaker. This phenomenon is
called “baryon-loading.”

The addition of baryonic matter into the fluid equations causes the differential amplification of
the odd and even acoustic peaks. The sign of the baryonic perturbations at the even peaks are
opposite to those of the dark matter perturbations, suppressing the amplitude of the temperature
fluctuations. The location and amplitude of these acoustic peaks are influenced by a number of
different cosmological paramaters, including relative amounts of baryons, dark matter, and curvature
in the universe. The first acoustic peak in particular has already given very strong restraints on the
total density parameter 0y ~ 1, with a best fit around (Q,,0 = 0.3, Q20 = 0.7). These results nicely
compliment the high-redshift supernova data, which give consistent values for the density parameters,
with an error ellipse approximately orthogonal to that shown in Figure 3.13.

Future of CMB anisotropy experiments will expand our range to higher mode numbers [ and higher
accuracy in the individual peaks. Equally exciting is the possibility of measuring the polarization of
the CMB fluctuations, which will give us yet another window into the physics of the early universe
as well as the “dark ages” - the time between recombination and galaxy formation.
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3.13 Big Bang Nucleosynthesis

In 1925, Cecilia Payne first determined the chemical makeup of the sun. The observed mass fractions
in hydrogen, X, helium Y, and the heavier elements, Z, was found tobe X : Y : Z = 0.70 : 0.28 : 0.02.
This result was most remarkable in that the Sun had a very different makeup than the Earth. But
ratio of hydrogen to helium was itself remarkable. Spectral observations of other stars yield, on rare
occasion, values for Z that are smaller by factors as large as 103, but the lowest values for Y are still
quite significant: Y, ~ 0.235 — 0.245. Nuclear burning theory predicts that from a pure hydrogen
fuel, the relative amounts of helium produced compared to the heavier elements could not be more
than AY/AZ ~ 2 — 3, far below the smallest astrophysical values of AY/AZ > 14. The conclusion
of this discrepancy is that the majority of the helium in the universe must not have been made in
stars.

If the helium doesn’t come from hydrogen fusion in the center of stars, where does it come from?
The only other environment that was hot and dense enough for fusion to occur was the Big Bang itself.
Turn back the cosmic clock to the point at which the universe was hot enough for hydrogen to fuse, yet
cool enough for the helium products to be stable. At these temperatures, the background fluid energy
density is dominated by relativistic particles — photons, neutrinos, anti-neutrinos, electrons, and
positrons. Assuming three flavors of neutrino (electron-, muon-, and tau-neutrinos), the relativistic
fluid energy density is

Prel = Py + Pu. + Po. + Pu, T P, Por T P+ Pt e (3.169)

(note that the photon, a boson, is its own anti-particle). The energy density of each species i is given
by integrating over the momentum phase space, weighting the density by the statistical occupation
values:

_gi [*4np*E(p)dp

P= s Jy R 1 (3:170)

where g¢; is the quantum spin degeneracy of the particle species (¢ = 1 for neutrinos and anti-
neutrinos, g = 2 for photons, electrons, and positrons). 7T is the black-body temperature of the fluid
and E(p) = p/c is the energy for relativistic particles. The + sign in the denominator corresponds
to the type of statistics used: +1 for fermions and —1 for bosons.

An interesting simplification can be made for evaluating the integral when we see

r3dz r3dx 203dx 1 [ (22)3d(27)
/ew—l_/ew+1_/ezx—1_§/ el2e) — 1 ° (3.171)

Thus the Fermi-Dirac integral and the Bose-Einstein integral are closely related:

1 7
IBE' — IFD = gIBE = IFD = gIBE (3172)

Now the evaluation of equation (3.170) is easy because we know that the photon energy density for
a black-body flux is

(T) = aT* (a = ﬁ) (3.173)
= T 1563h% ) '
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so if all the particle species are at the same temperature, (3.169) becomes

pra(T) = aT* |1+ 1—76(6) + g(Q) . (3.174)

Neutrinos couple to electrons and photons only through the weak interaction. While they are in
thermal equilibrium at the highest temperatures (at the earliest times), they decouple from the rest
of the background fluid:

THy=e tet Svtr. (3.175)

WV
weak interaction

At a temperature of 1 MeV, the electrons and positrons remain in thermal equilibrium with the
photon background, but are no longer in equilibrium with the neutrinos. Then, as the temperature
drops further below the rest mass energy of an electron, 0.511 MeV, the electrons and positrons
annihilate each other, depositing their energy directly into the radiation field. The result is a higher
background temperature for the photons than for the neutrinos. This temperature difference is
relatively straightforward to calculate.

We assume that before annihilations, all particle species are at the same temperature, Thefore. LThe
neutrino temperature 7, evolves decreases linearly with redshift,

(1+2)

(1 + Zbefore)
while the photons temperature jumps from Tefore t0 Tagier and then proceeds to evolve with redshift
(1+2)

(1 + Zatter)

Now throughout the annihilation phase, entropy must be conserved. The entropy density of a rela-
tivistic photon-electron-positron gas in a volume R? at temperature Tpegore iS

T, = Tvefore (3.176)

T7 = Tafier

(3.177)

3

s = g——(pe= + per + py+ Pe- + Pet + 1)
before
4R? 11
= (Pe- + pet+ + py) = —a(Thefore R)*. (3.178)
3Tbefore 3
Then the entropy after annihilation, when only photons remain, is

AR? 4
R = —a(Tuger R)®. (3.179)

o= 3Tafter (p’Y) 3

Again, since the total entropy is conserved, equating (3.178) and (3.179) gives

11\? 11\?
Tafter = (?) Tbefore = Tfy = (3) Tu- (3180)

Near the time of neutrino freeze-out, the predominant weak nuclear reactions taking place are

Ve+n = p+e, E.—E, =Q (3.181a)
e"+n = p+r, E,—E.=Q (3.181b)
n = p+e +71,, E,+E.=Q (3.181c)
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where the excess mass energy Q = (m, — m,)c® is deposited in the form of the kinetic energy
of the products. Just as in chemical reactions in equilibrium, we expect the ratio of the reactant
concentrations to be

[@] = QT (3.182)
M | o

If the total forward (n — p) reaction rate is A,, = A, + Ay + A, and the backwards rate is Ay,
then the neutron concentration should evolve as

dn,,
dt

where at these temperatures, the reaction rate scales as

T 5
Anp = Ao (To) . (3.184)

= _)\npnn + /\pnnpa (3183)

Here our notation departs from that used in the remainder of the chapter, with the subscript 0
referring to the time of neutron freeze-out rather than to the present epoch. With the expansion of
the universe and the corresponding decrease in temperature, the reaction will eventually fall out of
equilibrium. The criterion for equilibrium is

d . [n 1d T\°
——In|—=| <——=[m]==X|=] - 3.185
dt ! |:np:|eq Mn dt[n ] ’ (TO) ( )
From equation (3.182), we have
. Q
—h|—| =—/ 3.186
ar " [anq e (3-186)
and for the evolution of a radiation dominated universe (cf. eqn. 3.147b),
1/2
3c?
{ = _ , 3.187
[327TG (%aT 4) ( )
or 12
dt 2 3c?
= —_ - = ) 1
dT T3 (1727rGa) (3-188)
Then the reaction rate Ay at the time of freeze-out t; is
Q 1
Ao = Anplto, To) = ——. 3.189
0 = duplto, To) = 155 (3.159)
During the radiation era, the time scales as t o T2 so
dt T?
— = =2ty 1
dT 073 (3:190)

and then (3.185) becomes

d T\° T? Q (T\?
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Solving equations (3.186) and (3.191), we get

N, Q [1/T\® 4
In{f—)|=—|=(=}) —=|. 3.192
! <n,,) KTy |3 (TO) 3] (3.192)
Then near the time of freeze-out, the neutron to proton ratio should be
Ty, 4 @Q
—| = ———. 3.193
[n] e"p( 3kTo> (3199)

To determine the actual freeze-out temperature 7j, we need to know the reaction rate in order to
solve the equation

Q (1727rGaT4> V2

== ]{)TZ 302 5, (3194)

Anp
along with a working cosmology to give a(7). The cosmological model is relatively easy since at
these very early times, the universe is radiation dominated, any cosmological constant is negligible,
and the expansion is not sensitive to the relative baryon/dark matter density parameters.

A detailed calculation of the reaction rates relies on some quantum mechanics, namely “Fermi’s
Golden Rule,” which says that the reaction rate of a system transitioning between two states ¢ and
J in a continuum energy band is given by

3= T () (), (3.195)

where H is the Hamiltonian and p(E}) is the density of states around the final energy. For our
reactions, we have to sum over all possible transitions, i.e. all possible energies of the incoming and
outgoing particles. Because of the energy constraints on E,, E,, and (), we can substitute a Dirac
delta function for the density of states and get

o= Y %\(Hn,p)F(S(QJrE,, _E) (3.196a)

ve (in)
e (out)

2T

o= D, SUHL)HQ+ B~ B) (3-196D)
et (in)

Ve (out)

2
A= Y T Hap) 5@ - B, - E.). (3.196c¢)
e~ (out)
ve (out)

Considering the continuum of possible electron and neutrino energies, we can change the sum to an
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integral over momentum weighted by phase space density h=3vd>p:

_ [ 27 2 29e49v 2- * Ve p,%dpu Ef
Ao = _EMW) [(Hpp)| 7o Y |  (eB//FT 1 1) (e Ee/FT 1 1)
(Ee=FE,+Q) (3.197a)
[ 2 9ev 5| [ ve  DPidp, E?
— 22 (4 2 Hn 2 2 / e v e
)\b i h ( ﬂ—) |< ;p>| h,6 U ] Q+mec 64 (e*Ey/kT + 1) (eEe/kT + 1)7
(E.=E, — Q) (3.197b)
_ -
2 9eGy ey, phdpy E?
)\c — 2T (4 2 Hn 2 2 / e v e .
i 5 ( ﬂ-) |< ,p>| h6 v 1Jo ct (e_Eu/kT + ]_) (e—Ee/kT + ]_)
(Be=Q—E,) (3.197¢)
For high temperatures (kT > @, m.c?), define a dimensionless momentum scaled by temperature,
g = 7% and we get
2m 9e9v 5| (KT)° / > q“dg
Ap = Aa + X + Ae = | =—(47)2[(H,, ,)|? 2 3.198
p= ot dut o = | eanp i | (O [ T a0y

where the integral can be evaluated analytically to give I} = 1757r4 For later times, when (kT <

Q, mec?), the reaction rate can be calculated by defining a dimensionless momentum scaled by the

rest energy of an electron, 7 = 25 and a corresponding dimensionless energy, R = mQCQ and then

cb —r

Aoy = [2;; (4m)?|( n,p>|29;§“02] (mec)” /0 R [1—0317)2} P a10)

where this integral can be evaluated numerically to give I, =~ 1.636. Now the biggest missing piece
is the leading Fermi factor,

2% 2|

But this can be determined by measuring the reaction rate (3.199) experimentally, which is also quite
straightforward since the low-temperature reaction rate is just the inverse of the free neutron half-life
time:

Anp(KT << Q) = = 8871sec' (3.200)
Combining equations (3.194, 3.198, 3.199, and 3.200), the freeze-out temperature can be determined
from
Q@ [1n/ 32\ rg 1"
KTy |7 lo (1727rGa) (mec?)? ' (3:201)

Plugging into (3.193), the theoretical neutron-to-proton ratio at the end of the annihilation era is

T 4Q
I — exp [ —2—2 ) ~0.176. 3.202
n, P ( SkTO) (3.202)

So what happens to all these free neutrons flying around? Before most of them get a chance to
decay on their own, they most encounter a proton forming deuterium, most of which, in turn, goes
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on to form helium:

n+p — d+v
d+d — t+p
d+d — °*He+n
t+d — *‘He+n
SHe+d — *He+p. (3.203)

Some small fraction of the deuterium survives to the present time, but for the most part, all the
primordial neutrons end up in *He. The observed mass fractions in the universe of X : Y ~ 0.75: 0.25
corresponds to an initial ratio of n,/n, = 1/7, rather close to the result derived above.

3.14 Quasar Absorption Systems

This section draws heavily on concepts already introduced in different contexts. From Sections 2.7
and 2.8 we recall the production and emission of radiation from accretion disks around active galactic
nuclei (AGN or quasars). From Sections 3.2 we recall the redshift of photons emitted by receeding
sources, and from Section 3.6 we use the basic dynamics of an expanding universe. The results of
our discussion of quasar absorption lines will give new insight into the cosmic structures introduced
in Section 3.10.

dr, Figure 3.22: The spectrum of a quasar is roughly
dv J\ flat over many decades with a broad emission peak

around 1216 A in the rest frame of the quasar or
1216(1 + Zem) A in the rest frame of the observer.

The natural place to begin with is the source: the compact region of superheated gas surrounding
the supermassive black hole at the center of a distant galaxy. Due to the many different radiative
processes taking place in the accretion disk and surrounding nuclear bulge, including synchrotron
radiation, magnetic reconnection, scattering, and absorption, the rest-frame spectrum of the quasar
is rather complicated. However, for our purposes it can be approximated as roughly flat around the
visible and UV, with a large broad peak around the Ly« (pronounced “Lyman-alpha”) emission line
at 1216 A in the emitter’s frame (see Fig. 3.22). This line corresponds to the (2p — 1s) transition in
atomic hydrogen.

The quasar is sufficiently compact that it can accurately be modeled as a single point source
at redshift ze,,. The photons travel from this source through the expanding universe for billions of
light years until they finally get detected by a spectrometer on Earth. In this section we are not so
interested in what happens at the quasar where the photons are emitted, but rather what happens
during their trip through the vast reaches of intergalactic space. More specifically, what is the chance
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7., Figure 3.23: The schematic geometry of a quasar
_‘6’_ at redshift (1 4+ zen), shining through an slab of
‘1™ intevening gas at (14 z.s) and detected by a spec-

trometry at z = 0.

<

] E—

of a photon at a given wavelength to be absorbed by an intervening cloud of gas at redshift z,s, and
what does this tell us? The basic geometry of this problem is shown in Figure 3.23.

The probability of observing such a photon is given by
Pops = 6—7-, (3204)

where 7 is the total optical depth from the quasar to the observer. In all likelihood, there will be
multiple absorbing clouds of gas along the photons path, in which case we just add the optical depths
together. Suppose that a photon is absorbed by a hydrogen atom in an intervening cloud at redshift
(1 + Zaps). While absorbed at 1216 Ain the rest frame of the absorbed, it was emitted by the quasar
at a shorter wavelength. It appears to us as an absorption feature at Aops = 1216(1 + 2aps) A (see
Fig. 3.24).

dar Figure 3.24: A photon emitted at the quasar with
dv j\ Aem < 1216 A can get absorbed by a cloud of gas
at redshift (1 + z,5), appearing to an observer as

\/ an absorption feature in the flat quasar spectrum.

For simplicity, we will treat each gas cloud as a plane-parallel slab with constant temperature and
density at a single redshift. The differential optical depth is given by

dr = nHI(zabs)aHIdl, (3205)

where nyp is the number density of neutral hydrogen, oy is the absorption cross section of a single
neutral hydrogen atom, and dl is the differential path length in the cloud’s rest frame. While it is
physically accurate to think of the photon getting absorbed by the hydrogen atom, in reality, the
excited atom can only “hold” the photon for about one nanosecond before emitting it again, but
since the randomly directed emission is most likely not to be in our line of sight, the absorption cross
section can just as easily be thought of as a scattering cross section.

As shown in Figure 3.25, this cross section will actually be a function of wavelength with a
Lorentzian shape, peaked at 1216 A, but exhibiting a finite width due to the quantum mechanical
uncertainty of the absorption processes. For the typical lifetime At of an excited state, the width of

the peak AN\ scales as
AN~ (A1) (3.206)

We can estimate this line width by invoking the energy form of Heisenberg’s uncertainty principle:

AEAt > h. (3.207)
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/ lorentzian Figure 3.25: In the rest frame of the emitter (or
absorber), the Ly« transition line has a Lorentzian
profile centered around 1216 A.

>

T
1215.67

Taking the lifetime from the decay constant of the hydrogen 2p state, At ~ 1.6 x 107 sec, so the
effective Doppler width of the Ly« absorption line is

Av =76 m/s
or an energy resolution of
AFE 7
szz?)xl() . (3.208)

For sufficiently cold clouds the dominant effect on the spectral line widths is from this Lorentzian
broadening. At finite gas temperature the absorbers have a Gaussian distribution of velocities — lines
are therefore Doppler broadened as well. Convolving both effects gives the well-known Voigt profile,
which is a Lorentzian in the zero temperature limit and a Gaussian in the limit of no atomic oscillator
damping.

It should be noted that clouds may be finite in extent, in which case the cross section oy averaged
over variations in temperature and density within the cloud.

From basic thermodynamics, we know the energy of a gas at temperature T is £ = %kT per
degree of freedom in the gas. Since we are assuming a plane parallel system, we only care about the
radial velocity dispersion o, (not to be confused with the cross section!). For intergalactic hydrogen,
typical temperatures are Ty ~ 10* °K, which is a minimum of the simultaneous heating and cooling
curves (see Spitzer, Physical Processes in the Interstellar Medium), corresponding to

Ty
o, ~ 10 <104K> km/s. (3.209)

Now to include the cosmological expansion alluded to above, we rewrite the differential optical
depth as

dl
dT = nHI(ZabS,To)GHI(A/\, O'U) <%) dZ y (3210)

where we have made explicit the dependence of the cross section upon both the intrinsic width of
the line and upon the Doppler broadening. Writing dl = cdt, we have the following from equation
(3.98):

dl
= = [Q0(1+2)° + Qo1+ 2)° + Qo]

@ ~1/2
dz  H(z) (1+42)H, '

(3.211)
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By measuring the optical depth between z and z + dz we get a single number that depends upon the
the temperature (0,) and density ny; in the vicinity of z.

Of course, there are some technical complications. At any given wavelength (redshift), the spec-
trum has contributions from the thermal broadening and Lorentzian damping from the “wings” of
adjacent slabs. So in practice, we often take the optical depth averaging over cross sections, assuming
constant temperature and density:

dl

7(2) = nm( / onidz) . (3.212)

For a fraction of neutral hydrogen xpr, the average number density of HI at a redshift (1 + z) is
simply given by

Ny ~ 0-8nbary0nXHI(]- + Z)S- (3213)
dr, Figure 3.26: The theoretical spectrum of a quasar
dv at a redshift greater than that of reionization (1 +

Zreion)- Lhe optical depth through the surrounding

0 neutral hydrogen is much greater than unity.

The immediate problem, as pointed out by Gunn & Peterson and by Bahcall & Saltpeter, is that
if the universe were neutral (xy; & 1), the optical depth of Ly« absorption to most quasars is of
the order 7y ~ 10%. The entire spectrum below A = 1216 A would be completely absrobed (see
Fig. 3.26), which is not at all what we observe.! More typical values of the absorption probability
are Py, ~ 0.5, corresponding to a neutral fraction of only ym ~ 107*.2 The implication is that at
some redshift greater than that of most quasars, the plasma that “recombined” at recombination has
since been reionized. There is evidence from the CMB that reionization may have begun as early as
z ~ 20. There is also evidence from the highest redshift quasars that it may not have ended until
z ~ 6. Reionization is thought to be caused by the earliest generation of stars or by the first quasars,
both of which would send a bath of ionizing ultraviolet radiation through the universe, ionizing the
hydrogen that had been neutral through the “dark ages.”

What determines this photoionization rate? We can think of the equilibrium as a source-sink
problem, where the source of neutral hydrogen comes from free electrons and protons and the sink
comes from the ionizing photons. Then we can write the rate of change in local density of neutral
hydrogen according to

d
Zfl = an.numn — I'nar (3.214)
or p
NeNHIT
—1 = -T 3.215
dt nngr =« o ) ( )

'While this estimate assumes enough baryons to close the universe, even with the present day measurements of
Qp = 0.047, the optical depth to absorption would still be much greater than unity.

2This absorption manifests itself not as a uniform depression shortward of Lya but as a “forest” of lines very much
denser than the metallic lines observed longward of Lya.
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where « is the recombination coefficent (in units of cm?®/s) and T is the integrated ionization rate:

= 47?/ iU(l/)di/ ~ 1072 7, (3.216)
h

v>13.6 ov IV
with J, the specific intensity of the background ionizing radiation.

For the temperatures and densities we are interested in, o ~ 4 x 107 ** and n, ~ 107?, so we
get an equilibrium solution in equation (3.215) as long as the neutral hydrogen fraction is small:
xur ~ 107° — 107%, as we saw above. There is a problem, however, in that, for z > 3, the quasar
density drops off sharply, and the UV photons from O and B type stars have a relatively difficult
time getting out of the dense star-forming regions. So it is still an open question as to what caused
reionization at z > 6.

Finally it should be noted that while we focused our discussion here on the Lya transition of
neutral hydrogen, most quasar spectra actually show an large collection of different absorption lines,
from many other elements in addition to hydrogen. Coupled with the fact that we have multiple gas
clouds at multiple redshifts, degeneracies arise that can significantly complicate the analysis. Yet at
the same time these other lines give us a great deal of information about the composition, density,
and structure of the universe as it evolved over many billions of years.

3.15 Past and Present Superposed

Astronomers tend to take for granted the remarkable fact that when we look at the sky we see many
different historical epochs simultaneously. Our archeologist and geologist colleagues must think us
lucky, and perhaps a bit dimwitted for not having understood more, having been handed the universe
on a silver platter.

vf
’ z=3 Figure 3.27: When we look at the sky we see the
L, universe at very different times. The spectrum will
o be quite different depending on the ages of the
R z=1 stars formed, the absorption and re-emission by
7 dust, and the relative importance of AGNs.
a z=.1
log v

”

One minor problem is that all these different epochs are superposed (as seen in Fig. 3.27), and
we need a method of deprojecting them. We have that in the form of Doppler shifts, if an object has
measurable lines and if the object in question is sufficiently bright that we can afford to disperse its
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log,, 1 Figure 3.28: Star formation rate as a function of
SFR redshift. Observations at optical wavelengths in-
dicate a peak, but these may need correction for
absorption by dust.
I R .V 1 B |
log : : : : . Figure 3.29: By observing a blackbody in different
' : : : . filters, one can determine its temperature.
log va

photons. Until now Doppler shifts have been obtained almost exclusively at optical and near infrared
wavelengths.

In the course of our efforts we have understood a number of ways in which the past was different
from the present. There was less clustering of galaxies in the past and there were many more active
galactic nuclei, quasars and radio galaxies. There are other ways as well.

The fundamental plane for elliptical galaxies (Section 1.3) was in the past at higher surface
brightness for fixed effective radius r, and velocity dispersion o. The observations are consistent
with the very early formation of the stars in ellipticals and the slow fading of the stellar component
as stars evolve off the main sequence.

The luminosity function for galaxies has likewise evolved with time, somewhat differently for red
and blue galaxies. The changes have been modest for the redder bulge dominated systems more
dramatic for the bluer disk dominated systems. In particular, the number of faint blue galaxies
increases dramatically looking backward in time. The obvious interpretation is an increased rate of
star formation (SFR), rising steadily backward in time until redshift z = 1.5 (see Fig. 3.28). What
happens at yet higher redshift is still a matter of debate. A fraction of the optical and UV light from
star formation is absorbed by dust and reradiated in the mid-infrared. Whether the star formation
rate falls at z > 1.5 or continues to rise or flattens out depends upon corrections for the absorbed
flux.

Prior to the mid-1990s observations of galaxies were largely limited to redshifts less than unity.
Two independent developments pushed those limits out to z = 6.5. The first was the development by
Steidel of the “Lyman break” technique. If the spectra of stars were black bodies, we could measure
their temperatures by observing them with broadband filters — for example Johnson’s U, B,V, R, &
I — computing the relative fluxes in the different filters as shown in Figure 3.29. If we knew their
intrinsic temperatures, we would be able to compute a “photometric” redshift. While the spectral
energy distributions of galaxies are not, in general, those of black bodies, they nonetheless have
features that permit such photometric redshift estimates, with increasing accuracy as the number of
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916 A
u |
E E Figure 3.30: The spectra of hot stars show a pre-
\Y) I e . . e
. cipitous drop in flux at the Lyman limit due to the
' increasing opacity at hv > 13.6 €V. This suggests
' a scheme for finding high redshift galaxies.

log v

filters increases.

It is our good luck that stellar spectra deviate from those of black bodies in a way that makes
redshift determination even easier. The stellar opacity shortward of the Lyman limit at 912 A is very
high, causing a sharp drop in the flux. The U filter is centered at 3600 A. For objects at z = 3 and
slightly higher redshift there is little or no flux in the U filter but plenty of flux in the B and V filters
as seen in Figure 3.30. The galaxies are called “UV dropouts.” The same technique can be used at
yet higher redshifts by using triplets of filters that lie further to the red. Spectra have been taken of
the brighter UV dropouts, showing absorption lines typical of stellar winds in O and B stars. These
are evidently galaxies with substantial SFRs.

The second development was sociological. There have always been unspoken rules about how
much telescope time was too much time to ask for. In 1995 the then director of the Hubble Space
Telescope Science Institute, Bob Williams, decided to devote 300 orbits to four filter photometry of
what was called the Hubble Deep Field. Photometric redshifts were determined for thousands of
galaxies. Ironically, only now, with yet deeper surveys, have we been able to obtain large samples of
galaxies in the range 1 < z < 3. The strength of the Lyman break made it possible to leapfrog this
range into higher redshifts.

There is some concern that Lyman break surveys are missing those galaxies that are not forming
stars as well as those galaxies that are forming stars only in the depths of dark clouds, where their
light is absorbed by dust and re-emitted in the thermal infrared. Averaging over nearby galaxies, at
most a third of their bolometric luminosity is in the mid-infrared. But most of this comes from a small
number of IR bright galaxies star forming galaxies. There is reason to think that a larger fraction of
the galaxies at high redshift would be IR bright. Most starlight may never escape from the galaxies
in which it is emitted. Starting in the late 1990s the detectors on submillimeter telescopes became
sufficiently sensitive to detect z ~ 3 galaxies at an observed wavelength of 850 um. These objects
have very high star formation rates and seem to fill in the decline in SFR inferred from optically
selected galaxies, although the numbers are still quite small. Objects found in the mid-infrared with
the Spitzer infrared telescope may have a similar effect.

A major shortcoming of the submillimeter observations is their low resolution. Diffraction limits
the positional accuracy to roughly 10 arcseconds, producing error boxes that include large numbers
of optical sources. This can be improved by looking for submillimeter sources behind lensing clusters
of galaxies. One can also use X-ray and radio observations to identify which of the many candidates
in an error box is the submillimeter galaxy.
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Figure 3.31: A schematic
spectrum of the night sky de-
composed into contributions
from stars, AGN, and the
CMB. The CMB dominates by
a factor of 100 at its peak.
AGN contributes one tenth as
much as stars except at x-ray
log v frequencies.

log vf,
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Interestingly, deep X-ray searches have produced relatively few high redshift objects. The redshifts
for the AGN in these surveys are mostly less than unity.

While astronomy had its origins at optical wavelengths we now carry out deep surveys of the
extragalactic sky over almost every octave of the electromagnetic spectrum. Averaging over the
entire sky we get a spectrum that looks something like the cartoon in Figure 3.31. We plot the
quantity I, which has the property that it is flat if the flux from the sky is the same over every
decade of wavelength. The integrated brightness of the extragalactic sky is dominated by the cosmic
microwave background (much more so than in the figure). At infrared and optical wavelengths we
have v1, ~ 20 nanoWatts per steradian.

We have attempted to account, at least roughly, for the relative contributions of stars and active
galactic nuclei. The contribution from stars dominates that from AGN at most wavelengths longward
of the X-ray region. It is unclear how the balance between stars and AGN changes with redshift. At
wavelengths longward of 3 pm the light is re-radiated by dust. At shorter wavelengths it comes to
us directly from the atmospheres of stars and quasars.

In constructing Figure 3.31 we have plotted the extragalactic sky brightness (ESB). There are two
components to this — resolved sources and an unresolved background (the extragalactic background
light, acronymized as EBL). At different wavelengths the unresolved background makes very different
contributions — almost none at optical wavelengths and almost everything at mid-IR wavelengths.
The measurements in the mid-IR are mostly from the DIRBE and FIRAS experiments on the COBE
satellite, which had almost no resolution. Most of the mid-IR light probably comes from higher
redshift than the optical light. The near UV again comes from higher redshift than the optical, the
result of higher star formation rates at higher redshift.



