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LECTURE NOTES 1

QUANTIZATION OF THE FREE SCALAR FIELD


As we have already seen, a free scalar field can be described by the Lagrangian 

L = d3 x � , (1) 

where 

1 1 
� =

2 
∂µφ∂

µφ− 
2 
m 2φ2 (2a) 

=
1 
φ̇2 − 

1 ∇iφ∇iφ− 
1 
m 2φ2 . (2b) 

2 2 2

Our goal is to “quantize” this theory, in the sense of developing a quantum theory that 
corresponds to the classical theory described by the above Lagrangian. 

1. CANONICAL QUANTIZATION: 

Here we will use the method of canonical quantization, which I assume is already 
familiar to you in the context of quantum mechanics. Specifically, suppose that we were 
given a Lagrangian with a discrete number of dynamical variables qi: 

L = L(qi, q̇i, t) . (3) 

The canonical momenta would then be defined by 

∂L 
pi ≡ , (4)

∂q̇i 

and the Hamiltonian would be given by 

H = pi q̇i − L .  (5) 
i 

A quantum theory corresponding to this classical theory could then be constructed 
by promoting each qi and pi to an operator on a Hilbert space, and insisting on the 
canonical commutation relations 

[qi , pj ] =  ih̄ δij . (6) 
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For most of this course we will use units for which h̄ ≡ 1, but for now I will leave the h̄’s 
in the equations. The Hamiltonian H(pi, qi) is then also an operator on the Hilbert space, 
and in the Schrödinger picture the physical states evolve according to the Schrödinger 
equation 

∂ 
ih̄ |ψ(t)〉 = H |ψ(t)〉 . (7)
∂t 

If H is independent of time, Eq. (7) has the formal solution 

|ψ(t)〉 = e −iHt/h̄ |ψ(0)〉 . (8) 

Given any operator � , its expectation value in the state |ψ(t)〉 is then given by 

〈ψ(t) |� | ψ(t)〉 = ψ(0) � eiHt/h̄
� e −iHt/h̄� ψ(0) . (9) 

This equation leads naturally to the Heisenberg picture description, in which the states 
are treated as time-independent, and all of the time dependence is incorporated into the 
evolution of the operators: 

� (t) =  eiHt/h̄
� e −iHt/h̄ . (10) 

2. FIELD QUANTIZATION BY LATTICE APPROXIMATION: 

To quantize the classical field theory of Eq. (2), we can begin by quantizing a lattice 
version of the theory. That is, we can replace the continuous space by a cubic lattice 
of closely spaced grid points, with a lattice spacing a, and we can truncate the space to 
a finite region. The system then reduces to one with a discrete number of dynamical 
variables, exactly like the systems that we already know how to quantize. Then if we 
can take the limit as the lattice spacing a approaches zero and the volume approaches 
infinity, the quantization of the field theory can be completed. We will see later that the 
a → 0 limit is problematic for interacting theories, but we will see here that this program 
can be carried out easily for the free theory. 

When we replace the continuous space by a finite lattice of points, we can label each 
lattice site with an index k. In a fully detailed lattice description we would probably label 
each lattice site with a triplet of integers representing the x, y, and  z coordinates of the 
site, but for present purposes it will suffice to imagine simply numbering all the lattice 
sites from 1 to N , where  N is the total number of sites. The field φ(�x, t) is then replaced 
by a set of dynamical variables φk(t), where one can think of φk (t) as  representing  the  
average value of φ(�x, t) in a cube of size a surrounding the lattice site k. The Lagrangian 
of Eqs. (1) and (2) is then replaced by 

L = � k ∆V ,  (11) 
k 
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where 
∆V = a 3 (12) 

and 

� k = 
1 
2 
φ̇2 

k − 
1 
2 
∇iφk ∇iφk − 

1 
2 
m 2φ2 

k . (13) 

Here the lattice derivative ∇iφk is defined by 

∇iφk ≡ 
φk� (k,i) − φk 

, (14) 
a 

where k′(k, i) denotes the lattice site that is a distance a in the ith direction from the 
lattice site k. 

The canonical momenta are then given by 

pk = 
∂L 

= 
∂� k ∆V = φ̇k ∆V .  (15) 

∂φ̇k ∂φ̇k 

Since the canonical momenta are proportional to ∆V , it is natural to define a canonical 
momentum density πk by 

πk ≡ 
∆
pk 

V 
= 
∂

∂

� 

φ̇k

k = φ̇k . (16) 

Following Eq. (5), the Hamiltonian is then 

H = pkφ̇k − L = πkφ̇k − � k ∆V .  (17) 
k k 

The canonical commutation relations become 

[φk� , φk] = 0  , [pk� , pk] = 0  , and [φk� , pk] =  ih δ¯ k�k . (18) 

In terms of the canonical momentum densities, 

i¯ k�kh δ
[φk� , φk] = 0  , [πk� , πk] = 0  , and [φk� , πk] =  . (19)

∆V 

Although we have not yet constructed the full theory, it is not too early to write down 
the continuum limit of these defining equations. The continuum canonical momentum 
density becomes 

π(�x, t) =  
∂� 

= φ̇(�x, t) , (20) 
∂φ̇(�x, t) 



� � � 

� 

� 

� 

� � 

� � 

8.323 LECTURE NOTES 1, SPRING 2008: Quantization of the Free Scalar Field p. 4 

and the Hamiltonian becomes 

H = d3 x πφ̇− � . (21) 

The trivial canonical commutation relations carry over trivially: 

[φ(�x ′, t) , φ(�x, t)] = 0 and [π(�x ′, t) , π(�x, t)] = 0 , (22) 

obviously. For the nontrivial commutation relation, the result will be clearest if we first 
rewrite the last equation in (19) as a sum which will become an integral in the limit. If 
we let � denote a region of the lattice, the last equation in (19) becomes 

� � 1 if  k′ ∈ �[φk� , πk] ∆V = ih̄ δk� ,k = ih̄ (23)
0 otherwise.  

k∈ � k∈ � 

In the continuum limit 
[φk� , πk] ∆V 

k∈ � 

clearly approaches 

d3 x [φ(�x ′, t) , π(�x, t)] , 

x∈ � 

so Eq. (23) becomes 

d3 x [φ(�x ′, t) , π(�x, t)] = ih̄
1 if  �x′ ∈ � (24) 


x∈ � 0 otherwise.  

This relationship can be expressed more conveniently by introducing the Dirac delta-
function δ3(�x), which is defined by its integral*: 

d3x f(�x) δ(�x− �x ′) ≡ 
f(�x′) if  x′ ∈ � (25) 


x∈ � 0  otherwise.  

Given this definition, Eq. (24) can be rewritten as 

[φ(�x ′ x, t)] = i¯ x− � ′) ., t) , π(� h δ(� x (26) 

Note that the delta function is symmetric, so δ(�x− �x′) =  δ(�x′ − �x). 

* Note that one often thinks of the Dirac delta function δ3(�x) as the limit of a sequence 
of functions which each integrate to 1, but which become more and more sharply peaked 
at �x = 0. This approach is useful for intuition, but it is not mathematically rigorous. It 
can be shown that there exists no function that has the properties ascribed to the Dirac 
delta function. The Dirac delta function is actually a distribution, not a function. We 
will return to the definition of the Dirac delta function later in the course. The bottom 
line, however, is that the delta function can be defined, and the definition of an integral 
suitably generalized, so that Eq. (25) becomes exactly true by definition.  
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3. REVIEW OF SIMPLE HARMONIC OSCILLATOR: 

We will soon see that each Fourier component of a scalar field obeys the equations 
of a harmonic oscillator, so it is useful to review the quantum mechanics of a harmonic 
oscillator before we proceed. 

Consider the Lagrangian for a simple harmonic oscillator, which can be written as 

L =
1 
q̇2 − 

1 
ω2 q 2 , (27)

2 2 

where we have adopted units for which the mass m of the harmonic oscillator is one. The 
canonical momentum is 

∂L 
p = = q̇ ,  (28)

∂q̇

and the Hamiltonian is 

H = pq̇ − L =
1 
p 2 +

1 
ω2 q 2 . (29)

2 2 

The canonical commutation relation is 

[q ,  p] =  i¯ (30)h .  

Now we can define creation and annihilation operators 

a = 

� 
ω 
2h̄ 

q + 
i 

2h̄ω 
p ,  a  † = 

� 
ω 
2h̄ 

q − 
i 

2h̄ω 
p ,  (31) 

so that 
a ,  a  † = 1  . (32) 

The Hamiltonian can be rewritten as 

1 
H = h̄ω a † a + . (33)

2 

The commutators of H with the creation and annihilation operators are 

H ,  a† = h̄ω a† , [H ,  a] =  −h̄ω a , (34) 

from which it follows that the result of applying a† to an eigenstate of H is to produce 
an eigenstate of H with an eigenvalue higher than the original by h̄ω, while a acts on an 
eigenstate of H to lower the eigenvalue by h̄ω. The ground  state of  H therefore satisfies 

a |0〉 = 0  , (35) 
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while the (normalized) nth excited state can be written as 

|n〉 = √ 
1 � 

a †
�n |n〉 , (36) 

n! 

where the eigenvalue (energy) is 

1 
En = n + ¯ (37)hω . 

2


Eqs. (31) can be solved for q and p, giving


h̄ � � ¯ �hω � 
q = a + a † , p  = −i a − a † . (38)

2ω 2 

In the Heisenberg picture, 

q(t) =  eiHt/h̄ q e  −iHt/h̄

h̄ � � 
= eiHt/h̄ a + a † e −iHt/h̄

2ω (39) 

h −iωt + a † iωt= ae e
2ω 

and � 
h̄ω � � 

p(t) =  −i ae −iωt − a † e iωt . (40)
2 

4. QUANTIZATION OF THE SCALAR FIELD: 

We have used the continuum limit of the lattice version of the theory to obtain the 
key results 

π(�x, t) =  
∂ � 

= φ̇(�x, t) , (20)
∂φ̇(�x, t) 

H = d3 x πφ̇− � , (21) 

[φ(�x ′, t) , φ(�x, t)] = 0 and [π(�x ′, t) , π(�x, t)] = 0 , (22) 

and 
[φ(�x ′ x, t)] = i¯ x − � ′) ., t) , π(� h δ(� x (26) 

Having done this, we can now proceed with the continuum theory directly. 



� 

� 

� 

8.323 LECTURE NOTES 1, SPRING 2008: Quantization of the Free Scalar Field p. 7 

We view φ(�x, t) as a collection of dynamical variables, in the classical theory, which 
have been promoted to operators in the quantum theory, exactly as we did for the discrete 
system in Section 1. We can then use the Fourier transform to define convenient linear 
combinations of these operators: 

φ̃(�k , t) ≡ d3 x e  −i
k ·
x φ(�x, t) , (41) 

and �

π̃(�k , t) ≡ d3 x e  −i
k ·
x π(�x, t) , (42)


so that the Fourier inversion theorem implies that 

φ(�x, t) =  
d3k

e i

k ·
x φ̃(�k , t) (43) 

(2π)3 

and 

π(�x, t) =  
(2
d
π

3k 
)3 
e i


k ·
x π̃(�k , t) . (44) 

The fact that φ(�x, t) is a real classical variable and hence a Hermitian quantum operator 
implies that 

φ̃(−�k , t) =  φ†(�k , t) , (45) 

with a similar relation for π(�k , t). 

The Heisenberg equations of motion for φ(�x, t) are the same as the classical equations 
of motion: 

∂2φ − �∇2φ+ m 2φ = 0  . (46)
∂t2 

Since we have not set h̄ to one, we should keep in mind that m in this equation has the 
units of an inverse length, and not a mass. Eq. (46) implies that the Fourier transform 
field obeys 

∂2φ̃
(�k , t) + (�k 2 + m 2) φ̃(�k , t) = 0  . (47)

∂t2 

The general solution to this equation can be written as 

φ̃(�k , t) =  φ1(�k )e −iωpt + φ2(�k )e iωpt , (48) 

where � 

ωp = �k 2 + m2 . (49) 

The reality condition (45) implies that 

φ2(�k ) =  φ1
† (−�k ) , (50) 
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so 
φ̃(�k , t) =  φ1(�k )e −iωpt + φ† 

1(−�k )e iωpt . (51) 

The relation π = φ̇ then implies that 

π̃(�k , t) =  −iωpφ1(�k )e −iωp t + iωpφ
† 
1(−�k )e iωpt , (52) 

and then Eqs. (51) and (52) can be solved simultaneously to give an expression for φ1(�k ): 

φ1(�k ) =  
1
2 

� 

φ̃(�k , t) +  
ω

i 

p 
π̃(�k , t) 

� 

e iωp t 

� � (53) 

=
1 

d3 x e  −i(
k ·
x−ωp t) φ(�x, t) +  
i
π(�x, t) ,

2 ωp 

where the second line was obtained by using Eqs. (41) and (42).  Note that although 
the right-hand side contains quantities that depend explicitly on t, Eqs. (51) and (52) 
guarantee that the full expression is independent of time. By comparing with Eq. (31), 
one sees that φ1(�k ) bears some resemblance to an annihilation operator. To test this 

hypothesis, we can compute φ1(�k ) , φ1(�q ) and φ1(�k ) , φ1
† (�q ) . 

Using Eq. (53) and the canonical commutation relations, 

φ1(�k ) , φ1(�q ) =
1 

d3 x d3 y e  −i(
k ·
x−ωk t) e −i(
q ·y
−ωq t) 

4 

i i × φ(�x, t) +  π(�x, t) , φ(�y, t) +  π(�y, t)
ωk ωq 

=
1 

d3 x d3 y e  −i(
k ·
x−ωk t) e −i(
q ·y
−ωq t) (54)4 

i i × i¯ x− � i¯ x− �h δ3(� y) − h δ3(� y)
ωq ωk 

=
h̄ 

d3 x e  −i (
k +
q )·
x−(ωk +ωq )t 
� 

1 − 
1 

� 

.
4 ωk ωq 

We now use the identity 

d3 x e  −i(
k +
q )·
x = (2π)3 δ3(�k + �q ) , (55) 

which implies that the only possible nonzero contribution to Eq. (54) arises when �q = −�k , 
but in that case the factor in curly brackets vanishes. Thus, 

φ1(�k ) , φ1(�q ) = 0  , (56) 
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as we would expect if φ1(�k ) is proportional to an annihilation operator. 

Using the same techniques, we can now calculate 

φ1(�k ) , φ† 
1(�q ) =

1 
d3 x d3 y e  −i(
k ·
x−ωk t) e i(
q ·y
−ωq t) 

4 

i i × φ(�x, t) +  π(�x, t) , φ(�y, t) − π(�y, t)
ωk ωq 

=
1 

d3 x d3 y e  −i(
k ·
x−ωk t) e i(
q ·y
−ωq t) 

4 � � (57) 

× − 
i
ih̄ δ3(�x− �y) − 

i
ih̄ δ3(�x− �y)

ωq ωk 

=
h̄ 

d3 x e  −i (
k −
q )·
x−(ωk −ωq )t 
� 

1
+

1 
� 

.
4 ωk ωq 

¯ 2 hh ¯
= (2π)3 δ3(�k − �q ) = (2π)3 δ3(�k − �q ) .

4 ωk 2ωk 

The standard (continuum) definition of the annihilation operator is then given by 

a(�k ) =  
2ω
¯

k 
φ1(�k ) , (58)

h 

so the commutation relations become 

a(�k ) , a(�q ) = 0  , a(�k ) , a  †(�q ) = (2π)3 δ3(�k − �q ) . (59) 

Using Eqs. (43), (51), and (58), the field operator can now be expressed in terms of 
creation and annihilation operators: 

φ(�x, t) =  
d3k h̄

a(�k ) e i(

k ·x−ωk t) + a †(�k )e −i(
k ·
x−ωk t) . (60)

(2π)3 2ωk 

Note that in the second term I have changed variables of integration, �k → −�k , to write  
in the form that is shown. The canonical momentum density is then given by 

π(�x, t) =  φ̇(�x, t) 

(61)hωk = −i d3k ¯
a(�k ) e i(


k ·x−ωk t) − a †(�k )e −i(
k ·
x−ωk t) .
(2π)3 2 
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Finally, it is also useful to rewrite Eq. (53) in terms of the properly normalized annihilation 
operator, so that one can express the annihilation operator in terms of the field and 
canonical momentum density: 

a(�k ) =  
ω

2h̄ 
k d3 x e  −i(
k ·
x−ωpt) φ(�x, t) +  

ω

i 

p 
π(�x, t) . (62) 

We might also want the corresponding formula for the creation operator, which can be 
found simply by taking the adjoint of the above equation: 

a †(�k ) =  
ω

2h̄ 
k d3 x e  i(


k ·
x−ωpt) φ(�x, t) − 
ω

i 

p 
π(�x, t) . (63) 

The boxed equations above are the primary results that we will continue to use 
throughout the course. 


