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LECTURE NOTES 2


NOTES ON THE EULER-MACLAURIN

SUMMATION FORMULA


These notes are intended to supplement the Casimir effect problem of Problem 
Set 3 (2008). That calculation depended crucially on the Euler-Maclaurin summa­
tion formula, which was stated without derivation. Here I will give a self-contained 
derivation of the Euler-Maclaurin formula. For pedagogical reasons I will first derive 
the formula without any reference to Bernoulli numbers, and afterward I will show 
that the answer can be expressed in terms of these numbers. An explicit expression 
will be obtained for the remainder that survives after a finite number of terms in 
the series are summed, and in an optional appendix I will show how to simplify this 
remainder to obtain the form given by Abramowitz and Stegun. 

The Euler-Maclaurin formula relates the sum of a function evaluated at evenly 
spaced points to the corresponding integral approximation, providing a systematic 
method of calculating corrections in terms of the derivatives of the function evalu­
ated at the endpoints. Consider first a function defined on the interval −1 ≤ x ≤ 1, 
for which we can imagine approximating the sum of f(−1) + f(1) by the integral 
of the function over the interval: 

� 1 

f(−1) + f(1) = dx f(x) +  R1 , (1) 
−1 

where R1 represents a correction term that we want to understand. One can find 
an exact expression for R1 by applying an integration by parts to the integral: 

� 1 � 1 

dx f(x) =  f(−1) + f(1) − dx x f ′(x) , (2) 
−1 −1 

so � 1 

R1 = dx x f ′(x) , (3) 
−1 

where a prime denotes a derivative with respect to x.
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1. Expansion by successive integrations by parts: 

We want an approximation that is useful for smooth functions f(x), and a 
smooth function is one for which the higher derivatives tend to be small. Therefore, 
if we can extract more terms in a way that leaves a remainder term that depends 
only on high derivatives of the function, then we have made progress. This can 
be accomplished by successively integrating by parts, each time differentiating f(x) 
and integrating the function that multiplies it. We can define a set of functions 

V0(x) ≡ 1 , V1(x) ≡ x , 	 (4) 

and 

Vn(x) ≡ dx Vn−1(x) .	 (5) 

Eq. (5) is not quite well-defined, however, because each indefinite integral is defined 
only up to an arbitrary constant of integration. Regardless of how these constants 
of integration are chosen, however, one can rewrite Eq. (1) by using Eq. (3) and 
then successively integrating by parts: 

� 1 1 

f(−1)+f(1) = dx f(x) +  dx V1(x) f ′(x) 
−1 −1
� 1 � 1


= dx f(x) +  V2(1)f ′(1) − V2(−1)f ′(−1) − dx V2(x) f ′′(x) 
−1 −1
� 1 � �


= dx f(x) +  V2(1)f ′(1) − V2(−1)f ′(−1) 
−1 

− V3(1)f ′′(1) − V3(−1)f ′′(−1) + V4(1)f ′′′(1) − V4(−1)f ′′′(−1) + . . .  

�	 � 1 

+	 V2n(1)f2n−1(1) − V2n(−1)f2n−1(−1) − dx V2n(x) f2n(x) 
−1 � 1 2n �	 � 

= dx f(x) +  (−1)� V�(1) f �−1(1) − V�(−1) f �−1(−1) 
−1 �=2
� 1


− dx V2n(x) f2n(x) ,

−1


(6) 
where fn(x) denotes the nth derivative of f with respect to x. 



� 

8.323 LECTURE NOTES 2, SPRING 2008: Euler-Maclaurin Sum Formula p. 3 

2. Elimination of the odd � contributions: 

Eq. (6) is valid for any choice of integration constants in Eq. (5), so we can 
seek a choice that simplifies the result. Note that V1(x) is odd under x → −x. We 
can therefore choose the integration constants so that 

Vn(x)  if  n is even 
Vn(−x) =  (7)−Vn(x) if  n is odd . 

This even/odd requirement uniquely fixes the integration constant in Eq. (5) when 
n is odd, because the sum of an odd function and a constant would no longer be 
odd. We are still free, however, to choose the integration constants when n is even. 

Using the even/odd property, Eq. (6) can be simplified to 

� 2n1 � � � 
f(−1) + f(1) = dx f(x) +  (−1)�V�(1) f �−1(1) − (−1)� f �−1(−1) 

−1 �=2 (8) � 1 

− dx V2n(x) f2n(x) . 
−1 

Note that the terms in V�(1) for even � involve the difference of f �−1 at the two 
endpoints, while the terms for odd � involve the sum. Eq. (8) describes a single 
interval, however, and our goal is to obtain a formula valid for any number of 
intervals. We will do this by first generalizing Eq. (8) to apply to an arbitrary 
interval a ≤ x ≤ a+h, and then applying it to each interval in a succession of evenly 
spaced intervals. When this succession is summed, the even � terms involving the 
differences of the endpoints will cancel at each interior point, but the odd � terms 
will add. The odd � terms can therefore make a considerably more complicated 
contribution to the answer, but we can force them to vanish by using the remaining 
freedom in the choice of integration constants. When n is even in Eq. (5), we choose 
the integration constant so that � 1 

dx Vn(x) ≡ 0 . (9) 
−1 

Eq. (9) is always true for odd functions, so it is true for all n >  0. It then follows 
for all n > 1 that  � 1 

Vn(1) − Vn(−1) = dx Vn−1(x) = 0  . (10) 
−1 

If n is odd then Eq. (7) implies that Vn(−1) = −Vn(1), and so


Vn(1) = Vn(−1) = 0 for all odd n > 1 , (11)
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as desired. 

The Vn’s are now uniquely defined. In our construction we used the antisymme­
try property of Eq. (5) to fix the constant of integration for odd n, and the vanishing 
of the integral in Eq. (9) to fix the integration constant for even n. Eq. (9), however, 
holds also for odd n, and is sufficient to fix the integration constant for the odd n 
cases. The functions Vn(x) can therefore be defined succinctly by 

V0(x) ≡ 1 , (12a) � 
Vn(x) ≡ dx Vn−1(x) , and (12b) 

� 1 

dx Vn(x) ≡ 0  (for  n > 0) . (12c) 
−1 

We can use these properties to build a table for the lowest values of n: 

n Vn(x) Vn(1) 

0 V0(x) =  1  1 

1 V1(x) =  x 1 

2 V2(x) =  
x2 

2 
− 

1 
6 

1 
3 

3 V3(x) =  
x3 

6 
− 

x 
6 

0 (13) 

4 V4(x) =  
x4 

24 
− 

x2 

12 
+ 

7 
360 

− 
1 
45 

5 V5(x) =  
x5 

120 
− 

x3 

36 
+ 

7x 
360 

0 

6 V6(x) =  
x6 

720 
− 

x4 

144 
+ 

7x2 

720 
− 

31 
15120 

2 
945 

Eq. (11) guarantees that only the even-� terms contribute to Eq. (8), so we can




� 
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set � = 2k and rewrite Eq. (8) as 

� 1 n � � 
f(−1) + f(1) = dx f(x) +  V2k(1) f2k−1(1) − f2k−1(−1) 

−1 k=1 (14) � 1 

− dx V2n(x) f2n(x) . 
−1 

3. Application to an arbitrary interval: 

To apply Eq. (14) to an arbitrary interval a < x < a + h, one needs only to 
change variables. Let f(x) =  f̃(x̃), where 

h 
x̃ = (x + 1)  + a .  (15)

2 

Rewriting Eq. (14) in terms of f̃(x̃), while dividing the whole equation by 2 for later 
convenience, one has 

1�
f̃(a) +  f̃(a + h) 

� 
=

1 a+h 

dx̃ f̃(x̃)

2 h a 

+ 
1
2 

n � 
h 
2 

�2k−1 

V2k(1) f̃2k−1(a + h) − f̃2k−1(a) (16) 
k=1 

− 
1 

� 
h 

�2n−1 � a+h 

dx̃ V2n 

� 
2 

(x̃ − a) − 1 

� 

f̃2n(x̃) ,
2 2 ha 

where f̃n(x̃) denotes the n’th derivative of f̃ with respect to its argument x̃. Now 
that the original f and x have been eliminated, we can drop the tilde superscripts 
that appear in Eq. (16).  

4. Application to an arbitrary sum of intervals: 

The problem can now be completed by extending Eq. (16) to an interval a <  
x < b, divided into m steps of size h = (b− a)/m. Adding an expression of the form 
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(16) for each interval of size h, one has 

m � � b � �1 1 
f(a + kh) =  dx f(x) +  f(a) +  f(b)

h 2 
k=0 a 

1 
n 

h 
�2k−1 � � 

+ V2k(1) f2k−1(b) − f2k−1(a)
2 2 

k=1 

1 h 
�2n−1 a+h 2 

m−1 

− dx V2n (x − a) − 1 f2n(x + kh) .
2 2 ha k=0 

(17) 
Note that when one adds up the left-hand sides of the expressions of the form (16), 
all the terms have coefficient 1 except for the first and last term, each of which have 
coefficient 1

2 . In Eq. (17), the sum is written with all terms having coefficient 1, and 
the correction for the first and last term has been moved to the right-hand side. 

For all practical purposes, including the application to the Casimir effect in 
Problem Set 4, Eq. (17) is all that is necessary. For the Casimir application a = 0,  
b = ∞, and  h = 1, so Eq. (17) becomes 

∞ � ∞ � 1 1 1 
f(k) =  dx f(x) +  f(0) − f ′(0) + f ′′′(0)

2 12 7200k=0 (18) 
1 − f ′′′′′(0) + . . .  .  

30, 240

On the problem set the sum on the left started at 1 instead of 0, so the coefficient 
of f(0) on the  right was  −1

2 instead of 1
2 . (Note that the coefficient of the f(0) term 

was printed incorrectly in Huang’s book and in 8.323 problem sets from some years 
before 2003.) 

Before leaving the subject, however, one might want to establish the connection 
between Eq. (17) and the usual expression of the Euler-Maclaurin formula in terms 
of Bernoulli numbers, and one might wish to find a cleaner way to express the final 
term of Eq. (17), often called the remainder term.  One normally does not evaluate 
this term, but one wants to use it to argue that the remainder is small. 



� 

8.323 LECTURE NOTES 2, SPRING 2008: Euler-Maclaurin Sum Formula p. 7 

5. Connection to the Bernoulli numbers: 

The Euler-Maclaurin summation formula is stated in Abramowitz and Stegun,* 
hereafter called A&S, as follows: 

Let F (x) have its  first  2n derivatives continuous on an interval (a, b). 
Divide the interval into m equal parts and let h = (b − a)/m. Then for 
some θ, 1  > θ >  0, depending on F (2n)(x) on  (a, b), we have 

m � � 1 b 1 
F (a + kh) =  F (t) dt + {F (b) +  F (a)}

h 2 
k=0 a 

n−1 
h2k−1 

+ B2k{F (2k−1)(b) − F (2k−1)(a)} (19)
(2k)!

k=1 

m−1
h2n � 

+ B2n F (2n)(a + kh + θh) .
(2n)!

k=0 

Disregarding for now the remainder term (the 3rd term on the right), Eq. (19) 
agrees with Eq. (17) provided that 

B2k V2k(1)
= . (20)

(2k)! 22k 

According to A&S, p. 804, the Bernoulli numbers Bn are defined in terms of the 
Bernoulli polynomials Bn(x), which are defined by the generating function 

∞ 
text � tn 

= Bn(x) (for t <  2π). (21) 
et − 1 n! 

n=0 

The Bernoulli numbers are given by 

Bn = Bn(0) . (22) 

From these relations one can easily (i.e., easily with the help of a computer algebra 
program) calculate the lowest Bernoulli polynomials: 

* M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, With 
Formulas, Graphs, and Mathematical Tables, p. 806.  
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n Bn(x) Bn = Bn(0) 

0 B0(x) = 1  1 

1 B1(x) =  x − 
1 
2 

− 
1 
2 

2 B2(x) =  x 2 − x + 
1 
6 

1 
6 

3 B3(x) =  x 3 − 
3 
2 
x 2 + 

1 
2
x 0 

(23) 

4 B4(x) =  x 4 − 2x 3 + x 2 − 
1 
30 

− 
1 
30 

5 B5(x) =  x 5 − 
5 
2 
x 4 + 

5 
3 
x 3 − 

1 
6 
x 0 

6 B6(x) =  x 6 − 3x 5 + 
5 
2 
x 4 − 

1 
2 
x 2 + 

1 
42 

1 
42 

By comparing Eqs. (23) with Eqs. (13), one can conjecture the equality 

Vn(x) =  Ṽ n(x) , (24) 

where � � 

Ṽ n(x) ≡ 
2n 

Bn 
x + 1  

. (25) 
n! 2 

To prove this equality, it is sufficient to verify that Ṽ n(x) satisfies the relations (12), 
since these were the relations that defined Vn(x). It is straightforward to determine 
the properties required for Bn(x) so that  Ṽ n(x) obeys each of the relations (12): 

B0(x) = 1  , (26a) 

Bn(x) =  n dx Bn−1(x) , and (26b) 

� 1 

dx Bn(x) =  0  (for  n > 0) . (26c) 
0 
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Eq. (26a) was already written within Eqs. (23).  To verify Eq. (26b), differen­
tiate the generating equation (21) with respect to x: 

∞ 
t2ext � dBn(x) tn 

= . (27) 
et − 1 dx n! 

n=0 

One can obtain another expansion of the same quantity by multiplying the gener­
ating equation by t: 

∞ 
t2ext � tn+1 

= Bn(x) 
et − 1 n! 

n=0 
(28)∞ � tn 

= Bn−1 .
(n − 1)!

n=1 

Comparing like powers of t in expansions (27) and (28), one finds 

dBn = n Bn−1(x) , (29)
dx 

which is equivalent to Eq. (26b). Finally, to verify Eq. (26c), one can integrate the 
generating equation over x from  0 to 1:  

� 1 ∞ � 1text � tn 

0 
dx

et − 1 
= 1 =  

n=0 
n! 0 

dx Bn(x) . (30) 

Again by comparing powers of t, one verifies Eq. (26c).  Thus Ṽ n(x) obeys  all of  
the relations (12), and hence Vn(x) =  Ṽ n(x). 

Having established Eq. (24), it follows immediately that 

22k 

V2k(1) = V2k(−1) = B2k(0) , (31)
(2k)!

which is just what is needed to verify Eq. (20), and hence the agreement of our 
series expansion with that of A&S. 

Appendix: Simplification of the remainder term: 

The remainder term is the final term on the right-hand side of Eq. (17), given 
by 

1 
� 

h 
�2n−1 � a+h � 

2 
� m� −1 

R = − dx V2n (x − a) − 1 f2n(x + kh) . (32)
2 2 ha k=0 
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The goal of this appendix is to manipulate the remainder into the form given by 
A&S, as shown in Eq. (19) of this document.  I am including this appendix for 
completeness, but it is not physically important and you need not read it if you are 
not curious. 

First, notice that our definition of n is different from A&S’s, since the sum 
on the right-hand side of our Eq. (17) extends up to n, while the sum in A&S’s 
equation (Eq. (19)) extends only up to n−1. Thus, if our remainder term is to agree 
with A&S’s, it should be expressed in terms of f2n+2, not  f2n as in Eq. (32).  To 
accomplish this change, we will integrate by parts twice. The surface term vanishes 
for the first integration by parts, since V2n+1 has an odd subscript and therefore 
vanishes at the endpoints according to Eq. (11).  For the second integration by parts 
there is a surface term which must be kept. In detail, the two integrations by parts 
yield 

1 
� 

h 
�2n � � 

2 
� m−1a+h � 

R = dx V2n+1 (x − a) − 1 f2n+1(x + kh) (33a) 
2 2 ha k=0 

1 h 
�2n+1 m−1 � � � � 

= V2n+2(1) f2n+1 a + (k + 1)h − f2n+1(a + kh)
2 2 

k=0 

1 
� 

h 
�2n+1 � a+h � 

2 
� � m−1 

f2n+2(x + kh) .− dx V2n+2 (x − a) − 1 (33b) 
2 2 ha k=0 

Now notice that the first term on the right-hand side of Eq. (33b) can be rewritten 
using 

� a+h 

f2n+1
� 
a + (k + 1)h 

� − f2n+1(a + kh) =  dx f2n+2(x + kh) , (34) 
a 

which allows one to combine the two terms: 

1 h 
�2n+1 � a+h 

R = V2n+2(1) dx w(x) G(x) , (35)
2 2 a 

where 
V2n+2 h 

2 (x − a) − 1 
w(x) = 1  − (36)

V2n+2(1) 

and 
m−1 

G(x) =  f2n+2(x + kh) . (37) 
k=0 
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Using Eqs. (24), (25) and (31) to rewrite this expression in terms of B2n+2, one  
finds 

R = h2n+1 B2n+2 
� a+h 

dx w(x) G(x) , (38)
(2n + 2)!  a 

where � � 
x−a 

w(x) = 1  − 
B2n+2 h . (39)

B2n+2 

To complete the argument, one needs to use the fact that 

|B2n| > |B2n(x)| (for n = 1, 2, . . ., and  0  < x < 1) , (40) 

which we will prove below. This implies that the second term in Eq. (39) has 
magnitude less than 1, and hence 

w(x) > 0 . (41) 

Furthermore, from Eq. (26c) the second term in Eq. (39) vanishes when integrated 
over x from a to a + h, so  � a+h 

dx w(x) =  h .  (42) 
a 

Eqs. (41) and (42) imply that we can interpret w(x) as a weight factor in the 
computation of a weighted average, with 

� � 1 
� a+h 

G(x) ≡ dx w(x) G(x) . (43)
h a 

If we assume that every term on the right-hand side of Eq. (37) is continuous, then 
G(x) is continuous, and we can apply the mean value theorem* to conclude that, 
somewhere in the range of integration (a < x < a + h), G(x) must be  equal  to  its  
mean value G(x) . Thus  there exists  some number  θ in the range 0 < θ <  1 such  
that � � 1 a+h 

G(a + θh) =  G(x) = dx w(x) G(x) . (44)
h a 

Using the above relation to replace the integral in Eq. (38), one has finally 

R = h2n+2 B2n+2 
G(a + θh)

(2n + 2)!  
(45)m−1 

= h2n+2 B2n+2 
f2n+2(a + kh + θh) ,

(2n + 2)!  
k=0 

* See, for example, Methods of Mathematical Physics, Third Edition, by Sir 
Harold Jeffreys and Bertha Swirles (Lady Jeffreys), Cambridge University Press, 
1962, p. 50, section 1.132.  
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which matches the remainder term in A&S’s equation (Eq. (19)).  

We have reached the end, but to complete the proof we must justify the in­
equality (40). This inequality was necessary to assure the positivity of w(x), which 
in turn was necessary for the mean value theorem. 

The only proof that I could construct for this inequality depends on showing 
that the general shape of the Bernoulli polynomials Bn(x) in the interval (0, 1), for 
n ≥ 3, is always one of four possibilities, depending on n mod 4. Sample graphs 
illustrating these shapes are shown on the following page. Specifically, 

1 1 n mod 4 = 0: Bn(x) is symmetric about x =
 . The maximum is at x =
 ,

2 2

where Bn > 0, and the minimum is at x = 0  and  x = 1,  where  Bn < 0. 
1 
2 < x < 1, and vanishes at the endpoints of this
The slope is negative for


region.


(x) is antisymmetric about x =
 1 
2 , and vanishes at x = 0 
n mod 4 = 1: Bn

and x = 1. Between x =
 1 
2 and x = 1 the function rises monotonically to


a maximum and then falls monotonically.

1 1 n mod 4 = 2: Bn(x) is symmetric about x =
 . The minimum is at x =
 ,

2 2

where Bn < 0, and the maximum is at x = 0  and  x = 1,  where  Bn > 0. 
1 
2 < x < 1, and vanishes at the endpoints of this
The slope is positive for


region.


(x) is antisymmetric about x =
 1 
2
, and vanishes at x = 0 
n mod 4 = 3: Bn

and x = 1. Between x =
 1 
2

and x = 1 the function falls monotonically to

a minimum and then rises monotonically. 

Note that we have already shown (by Eqs. (11), (24), and (25)) that Bn(x) vanishes  
at  0 and  1 for  n odd. The remaining properties listed above can be shown by 
induction: one verifies that B3(x) is being correctly described, and then one uses 
Eqs. (26b) and (26c) to show that the properties for each value of n mod 4 imply 
the properties for (n + 1)  mod  4.  

(Note that graphically it appears that the zeros of B6(x) and  B10(x) coincide,  
but this is not exactly true. The zeros of B6(x), B10(x), and B14(x) lie at 0.2475407, 
0.2498447, and 0.2499903, respectively.) 

From the description above for Bn(x) when  n is even, one can see that the 
maximum absolute value of the function in the range 0 < x < 1 must occur either 
at the endpoints or at x =
 1 

2 . We can determine which of these two it is by using

the generating function (21) to derive an identity that relates them. 

Consider the generating equation (21) for x = 0, but with t replaced by t/2: 

∞ t n 

n=0 

B
n(0)
 2 1 t

n! 2 e(t/2) − 1 

= .
 (46)
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By manipulating the right-hand side, it can be re-expressed in terms of Bernoulli 
functions by using the generating equation: 

∞ t n � 1 t e(t/2) + 1  
Bn(0) 2 

n! 
=

2 e(t/2) − 1 
· 
e(t/2) + 1 


n=0


1 te(t/2) + t 
= (47)

2 et − 1 
∞ ∞1 � � � tn � tn 

=
2 

Bn 
1
2 n!

+ Bn(0) 
n! 

. 
n=0 n=0 

Comparing like powers of t on both sides of the equation, one finds 

Bn(0) 1 � � 
1 
� � 

= Bn 2 + Bn(0) , (48)
2n 2 

which implies that � � 
� 

1 
� 

Bn 2
1 = −Bn(0) 1 − 

2n−1 
. (49) 

It follows that |Bn(0)| > �Bn 
1 �, and therefore Eq. (40) holds.  Our proof excluded 2 

the special case B2(x), which differs from the cases of larger n in that its derivative 
does not vanish at 0 and 1. It can easily be verified, however, that the maximum 
absolute value of B2(x) for  0  < x <  1 must occur at x = 2

1 or at the endpoints, so 
Eq. (49) can again be used to show that Eq. (40) applies in this case as well.  


