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INFORMAL NOTES

DIRAC DELTA FUNCTION AS A DISTRIBUTION


Why the Dirac Delta Function is not a Function: 

The Dirac delta function δ(x) is often described by considering a function that 
has a narrow peak at x = 0, with unit total area under the peak. In the limit as the 
peak becomes infinitely narrow, keeping fixed the area under the peak, the function 
is sometimes said to approach a Dirac delta function. One example of such a limit 
is 

g(x) ≡ lim gσ(x) , (4.1)
σ→0 

where 

gσ(x) ≡ √ 
1 

e − 12 x 2/σ2 

. (4.2)
2π σ 

The area under gσ(x) is 1, for any value of σ > 0, and gσ(x) approaches 0 as σ → 0 
for any x other than x = 0.  

However, it was pointed out long ago that the delta function cannot be rigor­
ously defined this way. The function g(x) is equal to zero for any x = 0,  and  is  �
infinite at x = 0; it can be shown that any such function integrates to zero. To see 
this, define the integral as the area under the curve, and consider the construction: 

In this picture the vertical axis is entirely encased in rectangles, each of which has 
height 1. The width of the rectangles vary, with the lowest rectangle having width 
ε, for  some  ε > 0, and each successive rectangle has half the width of the rectangle 
below. Note that the outline of the boxes is everywhere above the curve g(x), so 
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the area under g(x) must be less than the total area of the boxes. But the total 
area of the boxes is given by a geometric series, 

1 1 
A = ε + ε + ε + . . . ≤ 2ε .  (4.3)

2 4 

Since ε can be chosen as small as one likes, the area under the limit function g(x) 
must be zero. 

This result does not contradict the statement that the area under gσ(x) is  1  
for any σ > 0. Rather, this is a case where the limit of an integral is not the same 
as the integral of the limit of the integrand. The integral has the value 1 for every 
σ >  0, so the limit of the integral as σ → 0 is 1. However, if one takes the limit of 
the integrand first, and then integrates, the answer is zero. 

Dirac Delta Function as a Distribution: 

A Dirac delta function is defined to have the property that 

� ∞ 

dx ϕ(x) δ(x − a) ≡ ϕ(a) . (4.4) 
−∞ 

But we have just  seen  that  there is  no function  δ(x) which has this property, as long 
as integration is defined by the area under a curve. However, there is no problem 
defining a distribution that behaves this way. Using the notation we defined earlier 
for distributions, we define 

(4.5)Tδ(x−a)[ϕ] ≡ ϕ(a) . 

Here Tδ(x−a) is the name that we will use for the distribution that acts like integra­
tion over the delta function δ(x− a), and ϕ(x) is the test function. This is certainly 
a linear functional that is defined on all Schwartz functions, and therefore is a tem­
pered distribution. We interpret Eqs. (4.4) and (4.5) as meaning the same thing, 
where the second form emphasizes the definition as a distribution, and the first form 
emphasizes that distributions can be viewed as a generalized kind of function, with 
a notation that makes them look like functions. That is, we define 

� ∞ 

dx ϕ(x) δ(x − a) ≡ Tδ(x−a)[ϕ] ≡ ϕ(a) . (4.6) 
−∞ 

To put it differently, we must remember that an integral over a delta function, such 
as Eq. (4.4), is not defined as a standard integral— instead it is symbolic integral, 
which is defined as a distribution which maps the function that multiplies the delta 
function to its value at the point where the argument of the delta function vanishes. 



� 

� 
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What about dp e−ip(x−a) ? 

If we interpret this integral in the sense of Riemann or Lebesgue, it simply does 
not exist — it diverges. As a distribution, however, we can interpret 

� ∞ 

I(x) ≡ dp e  −ip(x−a) (4.7) 
−∞ 

as the Fourier transform of 
f(p) =  eipa . (4.8) 

Since I(x) is the Fourier transform of the distribution Tf [ϕ], it must itself be a 
well-defined distribution. Using the notation of distributions, the distribution cor­
responding to I is then given by 

TI [ϕ] =  T̃f [ϕ] . (4.9) 

To evaluate the distribution TI [ϕ], we first write the distribution corresponding 
to function f(p) in the usual way: 

� ∞ � ∞ 

Tf [ϕ] =  dp f(p) ϕ(p) =  dp eipaϕ(p) . (4.10) 
−∞ −∞ 

The Fourier transform of this distribution is then defined by applying the same 
distribution to the Fourier transform of the test function, so 

� ∞ 
ipa ˜T̃f [ϕ] ≡ Tf [ϕ̃] =  dp e ϕ(p) . (4.11) 

−∞ 

But the inverse Fourier transform is given by 

ϕ(x) =  
1 ∞ 

dp eipx ϕ̃(p) , (4.12)
2π −∞ 

so by comparing the two formulas above, one sees that 

T̃f [ϕ] = 2πϕ(a) . (4.13) 

But this is exactly the definition of the delta function distribution, as given in 
Eq. (4.6), so  

T̃f [ϕ] = 2π Tδ(x−a)[ϕ] . (4.14) 



� � 

� � 
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If we write these distributions as symbolic integrals, then the above equation 
becomes � ∞ � ∞ 

dx I(x)ϕ(x) = 2π dx δ(x − a)ϕ(x) , (4.15) 
−∞ −∞ 

where we remembered from Eq. (4.9) that T̃f [ϕ] is equal to the distribution corre­
sponding to I(x). Since Eq. (4.15) holds for an arbitrary test function ϕ(x), we can 
equate the distributions without showing their arguments: 

� ∞ 

I(x) =  dp e  −ip(x−a) = 2πδ(x − a) . (4.16) 
−∞ 

The Derivative of a Delta Function: 

If a Dirac delta function is a distribution, then the derivative of a Dirac delta 
function is, not surprisingly, the derivative of a distribution. We have not yet 
defined the derivative of a distribution, but it is defined in the obvious way. We 
first consider a distribution corresponding to a function, and ask what would be the 
distribution corresponding to the derivative of the function. 

Starting with a well-behaved (i.e., piecewise continuous and bounded by some 
power of t) function f(t), we defined the corresponding distribution by � ∞ 

Tf [ϕ] ≡ dt f(t)ϕ(t) . (4.17) 
−∞ 

Then if we write the distribution corresponding to df/dt, we get  � ∞ df 
Tdf/dt[ϕ] =  dt ϕ(t) (4.18) 

dt−∞ 

Since f(t) is bounded for large |t| by a power of t, and  ϕ(t) falls off faster than any 
power, we can integrate by parts without encountering a surface term: � ∞ dϕ 

� 
dϕ 

� 

Tdf/dt[ϕ] =  − dt f(t) = −Tf . (4.19)
dt dt−∞ 

This result can then be taken as the general definition of the derivative of a distri­
bution: 

dϕ 
T ′[ϕ] ≡ −T . (4.20)

dt 

Applying this result to a delta function in the notation of Eq. (4.6), it looks exactly 
like integration by parts: 

� ∞ � 
dδ(t − a) df � 

dt f(t) = − . (4.21)
dt dt−∞ t=a 


