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QUANTUM MECHANICS AND PATH INTEGRALS 

The goal of this section is to derive the path integral formulation of quantum 
mechanics. 

Consider first a free particle, moving in one dimension: 
2 

H = 
p

. (5.1)
2m 

The evolution of a state is described by applying the operator U(tf ) ≡ e−iHtf /h̄. 
Let � � � � 

Ufi  ≡ xf � e −iHtf /h̄� xi . (5.2) 

To develop a path integral expression for this matrix element, begin by dividing the 
interval 0 ≤ t ≤ tf into N + 1 equal steps, so (N + 1)∆t = tf : � 1 2 3 N � � � � | | | | | |

←→ 
| | | | � � � 

0 ∆t tf 

Now express the evolution operator e−iHtf /h̄ as the product of an evolution operator 
for each interval ∆t: � �N+1 

e −iHtf /h̄ = e −iH∆t/h̄ . (5.3) 

Then insert a complete set of intermediate states between each factor, using � ∞ 

1 =  dx | x〉〈 x| . (5.4) 
−∞ 

Calling the variables of integration x1, x2, . . . , xN , � ∞ � � � � 
Ufi  = dx1 . . . dxN xf 

�� e −iH∆t/h̄�� xN 
−∞ (5.5) 

× xN 
�� e −iH∆t/h̄�� xN−1 . . .  x1 

�� e −iH∆t/h̄�� xi . 

The matrix elements in the above expression can be evaluated exactly by using a 
momentum space representation: � � � � ∞ 2 

y �� e −iH∆t/h̄�� x = dp 〈 y| p〉 exp − i
p

∆t 〈 p| x〉
2mh̄−∞ � � . (5.6) 

=
1 

� ∞ 

dp exp { ip(y − x)/h̄} exp − i
p2 

∆t
2πh̄ −∞ 2mh̄
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Completing the square, 

� 
y �� e −iH∆t/h̄�� x 

� 
= 

1 
exp 

� 
i m(y − x)2 �


2πh̄ h̄	 2∆t � � � (5.7)� ∞	 �2
i∆t m(y − x)× dp exp	 − p − .
2mh̄ ∆t−∞ 

The integrand oscillates wildly at high p, and the integral is conditionally conver­
gent. It can be rendered absolutely convergent by assigning an infinitesimal negative 
imaginary part to ∆t. Then apply the formula 

� ∞	 � 

dp e−ap 2 

= 
π 

(Re a >  0) (5.8) 
−∞ a 

to give 

�	 � �2 

y �� e −iH∆t/h̄�� x	 = 
m 

exp 
i m y − x 

∆t . (5.9)
2πih̄∆t h̄ 2 ∆t 

This expression is then inserted back into Eq. (5.5), and then one in principle takes 
the limit N →∞: � m �(N+1)/2 ∞


Ufi  = lim dx1 . . . dxN

N→∞ 2πih̄∆t −∞ � �2 � �2

i m xf − xN m xN − xN−1 × exp	 + +
h̄ 2 ∆t 2 ∆t	 (5.10) 

� �2 
m x1 − xi+ . . .  +	 ∆t .
2 ∆t 

Although the above expression looks at first like a mess, it is actually the endpoint 
of the calculation. The quantity is called a path integral, or sometimes a functional 
integral, and it may be denoted more compactly by 

x(tf )=xf 

i tf 1 
Ufi  = Dx(t) exp  dt mẋ2 . (5.11)

¯ 2h 0 
x(0)=xi 

Note that the overall normalization of the path integral is quite complicated, but

fortunately it will almost never be necessary to know it. In practical applications,

whenever the normalization is needed it is determined by using the unitarity of
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the operator U(t), or, equivalently, the unit normalization of the final state wave 
function. 

So far we have done only the free particle, so the next step is to include a 
potential energy function in the Hamiltonian: 

2 

H = 
p

+ V (x) . (5.12)
2m 

One proceeds by dividing the time interval and inserting intermediate states as 
before. The crucial difference comes in the evaluation of the matrix element 

y �� e −iH∆t/h̄�� x , (5.13) 

which now involves a Hamiltonian with a potential. The easiest way to proceed is 
to use the identity 

e A e B = e A+B+ 2
1 [A,B]+... . (5.14) 

This relation is known as the Baker–Campbell–Hausdorff identity. The terms omit­
ted on the right-hand-side are all constructed from higher order iterated commuta­
tors of A and B, and it is somewhat difficult to prove the theorem in general. We, 
however, will need the theorem only to the order shown, and to this order (or any 
finite order) it is straightforward to demonstrate the relation by expanding both 
sides in a power series and then comparing. Thus 

exp 

� 

−i
p2 

∆t 

� 

exp {−iV ∆t/h̄} = exp  

� 

− 
i 

� 
p2 

+ V 

� 

∆t + O(∆t2) 

� 

.
2mh̄ h̄ 2m 

(5.15) 
The O(∆t2) correction gives no contribution in the N → ∞ (∆t → 0) limit, so 
to the accuracy required we can take the evolution operator to be the operator on 
the left-hand side of Eq. (5.15).  The potential energy factor then operates on the 
position-space eigenstate to the right, and can be taken outside the matrix element. 
The remaining matrix element is the one already evaluated, so 

� � �2 

y �� e −iH∆t/h̄�� x = 
m 

exp 
i m y − x − V (x) ∆t

2πih̄∆t h̄ 2 ∆t (5.16) 

+ negligible terms higher order in ∆t .  

Putting this into an expression of the form of Eq. (5.5), taking the N → ∞ limit, 
and using the compact notation of Eq. (5.11), one has 

x(tf )=xf 

i tf 1 
Ufi  = Dx(t) exp  dt mẋ2 − V (x) . (5.17)

¯ 0 2h 
x(0)=xi 
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Note that for any given path x(t) the classical action is defined by the functional 

tf 

S [x(t)] = dt L(t) (L = Lagrangian) 
0 

(5.18) � tf 1 
= dt mẋ2 − V (x) ,

20 

so 

x(tf )=xf 

hUfi  = Dx(t) e ¯
i S[x(t)] . (5.19) 

x(0)=xi 


