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LECTURE NOTES 6


PATH INTEGRALS, GREEN’S FUNCTIONS,

AND GENERATING FUNCTIONALS


In these notes we will extend the path integral methods discussed in Lecture 
Notes 5 to describe Green’s functions, which we define to be ground state expecta­
tion values of the time-ordered product of Heisenberg operators. For the case of a 
nonrelativistic particle moving in one dimension, discussed in Lecture Notes 5, the 
Green’s functions can be written as 

G(tN ,  . . . ,  t1) ≡ 〈0 |T{x(tN )x(tN−1) . . .  x(t1)}| 0〉 
(6.1) 

= 〈0 |x(tN )x(tN−1) . . .  x(t1)| 0〉 , 

where |0〉 denotes the ground state, and the second line assumes that we have labeled 
the time arguments so that they are time-ordered, in the sense that 

tN ≥ tN−1 ≥ . . .  ≥ t1 . (6.2) 

In the quantum field theory, the Green’s functions will be defined analogously by 

G(xN ,  . . . ,  x1) ≡ 〈0 |T{φ(xN ) . . .  φ(x1)}| 0〉 , 
(6.3) 

= 〈0 |φ(xN ) . . .  φ(x1)| 0〉 , 

where |0〉 denotes the vacuum state, and again the second line assumes that the time 
arguments are time-ordered. In the nonrelativistic quantum mechanics example of 
Eq. (6.1), the Green’s functions are not quantities that are particularly interesting, 
so they are usually never mentioned in a course in quantum mechanics. We will 
soon see, however, that the quantum field theory Green’s functions of Eq. (6.3) are 
very interesting. In particular, the entire formalism for calculating scattering cross 
sections and decay rates will be based upon relating these quantities to the Green’s 
functions. In addition to showing how to express these Green’s functions as path 
integrals, in these notes we will also see that one can define a generating functional 
Z[J ] in such a way that the Green’s functions can be expressed simply in terms of 
the functional derivatives of the generating functional. 
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Path Integrals, Green’s Functions, and Generating Functionals 

GREEN’S FUNCTIONS: 

To begin, we recall that in Lecture Notes 5 we learned to express the evolution 
operator of quantum mechanics as a path integral: 

� x(tf )=xf 

Ufi  = Dx(t) e ¯
i S[x(t)] ,h (6.4) 

x(0)=xi 

where � tf 

S [x(t)] = dt L(x, ẋ) (L = Lagrangian) 
0 

(6.5)
tf 

� �
1 

= dt mẋ2 − V (x) .
20 

We also know that the Heisenberg field operators appearing in Eq. (6.1) can be 
written as 

x(t) =  e iHt x(0) e −iHt , (6.6) 

where x(0) ≡ x is the Schrödinger representation position operator. Eq. (6.1) can 
S 

then be rewritten as 

G(tN ,  . . . ,  t1) =  0 �� e iHtN x
S e 

−iH(tN −tN−1 )x
S . . .  e  −iH(t2 −t1)x

S e 
−iHt1 �� 0 . (6.7) 

To express this quantity as a path integral, we can insert at each operator xS 

a complete set of states in the position representation, using � ∞ 

Identity Operator = dx |x〉 〈x| , (6.8) 
−∞ 

which can be multiplied by xS to give � ∞ ∞ 

x = dxx |x〉 〈x| = dx |x〉x 〈x| . (6.9)
S S −∞ −∞ 

Then � ∞ 

G(tN ,  . . . ,  t1) =  dx1 . . .  dxN 
−∞ 

0 �e iHtN � xN xN xN 
�� e −iH(tN −tN−1 )�� xN−1 xN−1 . . .  

× x2 x2 
�� e −iH(t2 −t1 )�� x1 x1 

� 
x1 

�e −iHt1 � 0 
� 
. 

(6.10) 



� 

� 

8.323 LECTURE NOTES 6, SPRING 2008 p. 3 

Path Integrals, Green’s Functions, and Generating Functionals 

The  matrix elements  in this expression  can all  be  written as path integrals,  
except for the ground state matrix elements on the two ends. Even these matrix 
elements can be treated by path integral methods, however, by noting that the 
ground state is defined in terms of the Hamiltonian, and path integrals can be 
used to construct matrix elements of exponentials of the Hamiltonian. An arbitrary 
state, such as the state of definite position |x0〉 for some constant x0, can always be 
expanded in energy eigenstates: 

|x0〉 = |ψn〉 〈ψn |x0 〉 . (6.11) 
n 

We can isolate the ground state contribution to this equation by multiplying by 
sides by e−ξH , where  ξ is some real number: 

e −ξH |x0〉 = e −ξEn |ψn〉 〈ψn |x0 〉 , (6.12) 
n 

where on the right the operator H has been replaced by its eigenvalue En, where  
H |ψn〉 = En |ψn〉. As ξ becomes large, the ground state contribution to the right-
hand side will be less suppressed than any other state. We can compensate for 
this suppression by multiplying by eξE0 , where  E0 is the energy of the ground state 
|ψ0〉 ≡ |0〉. Thus, 

lim e ξE0 e −ξH |x0〉 = |ψ0〉 〈ψ0 |x0 〉 . (6.13) 
ξ→∞ 

For our path integral it will be more convenient to describe the real exponential in 
the above equation as a “small” correction to a much larger imaginary exponential. 
We introduce a variable T , with units of time, taking the limit as T approaches 
infinity times (1 − iε), where ε is a small positive constant. At the end we will take 
the limit ε → 0, but only after the infinite limit is carried out, so that ∞ · ε = ∞. 
If we assume that 〈ψ0 |x0 〉 � to be a point = 0, meaning that we have not chosen x0 

where the ground state wave function vanishes, then we can divide both sides of 
Eq. (6.13) by this quantity, obtaining 

|ψ0〉 = lim e −iHT |x0〉 e
iE0 T 

. (6.14) 
T →∞(1−iε) 〈ψ0 |x0 〉 

For the bra vector, we can use the analogous relation 

iE0 T 

〈ψ0| = lim 
e 〈x0| e −iHT . (6.15) 

T →∞(1−iε) 〈x0 |ψ0 〉 
Note that Eq. (6.15) was not obtained by simply taking the adjoint of Eq. (6.14), 
because the adjoint equation would involve T ∗ instead of T , which would not be 
useful for our current purposes. 



� 

� � � � � � � � 
� � � � � � � � 

� 

� 

� 

8.323 LECTURE NOTES 6, SPRING 2008 p. 4 

Path Integrals, Green’s Functions, and Generating Functionals 

If we use Eqs. (6.14) and (6.15) to replace both ground state matrix elements 
in Eq. (6.10), we obtain 

2iE0 T ∞ e
G(tN ,  . . . ,  t1) = lim dx1 . . .  dxN 

T →∞(1−iε) 〈x0 |ψ0 〉 〈ψ0 |x0 〉 −∞ � −iH(T −tN )� � −iH(tN −tN−1 )� x0 � e � xN xN xN � e � xN−1 xN−1 . . .  

× x2 x2 
�� e −iH(t2 −t1 )�� x1 x1 x1 

�� e −iH(T +t1 )�� x0 . 

(6.16) 
Thus, we see that the path integral is so smart that it can even calculate the ground 
state wave function for us. The last matrix element in Eq. (6.16) can also be written 
as � � � � � −iH(t1−(−T ))� x1 � e � x0 , 

which can be described as the evolution operator from time −T to time t1. 

If each matrix element in Eq. (6.16) is expressed as a path integral by using 
Eq. (6.4), we  find  

2iE0 T ∞ e
G(tN ,  . . . ,  t1) = lim dx1 . . .  dxN 

T →∞(1−iε) 〈x0 |ψ0 〉 〈ψ0 |x0 〉 −∞ � x(tN )=xN 
� x(tN−1)=xN−1 

¯ S[x(t)]Dx(t) e h̄
i S[x(t)] xN Dx(t) eh

i 
xN−1 . . .  

x(T )=x0 x(tN )=xN � x(t1 )=x1 x(−T )=x0 

¯ S[x(t)]× x2 Dx(t) e h̄
i S[x(t)] x1 Dx(t) eh

i 
. 

x(t2 )=x2 x(t1)=x1 

(6.17) 
We see that for any t which is not equal to one of the set {t1,  . . .  , tN }, the  quantity  
x(t) appears as one of the variables of integration in one of the path integrals. For 
each ti in the set {t1,  . . .  , tN }, x(ti) is required by the limits of integration to be 
xi, which is then integrated from −∞ to ∞. Thus, x(t) is actually a variable of 
integration for all values of t, provided that we recognize that x(ti) ≡ xi. All the 
path integrals can then be combined into one path integral from time −T to T , so  
Eq. (6.17) simplifies enormously: 

G(tN ,  . . . ,  t1) =  

2iE0 T x(T )=x0 

lim 
e Dx(t) e ¯

i S[x(t)] x(tN ) . . .  x(t1) .h 

T →∞(1−iε) 〈x0 |ψ0 〉 〈ψ0 |x0 〉 x(−T )=x0 

(6.18) 
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The complicated factor in front of the path integral can be cancelled if we 
divide the expression by 

2iE0 T x(T )=x0 � �	 � � e−2iHT � 0 = Dx(t) e
̄ S[x(t)]i 
h ,
0
 (6.19)
�e
 〈x0 |ψ0 〉 〈ψ0 |x0 〉 x(−T )=x0 

which gives finally 

i 
h

i 
h

�	 x(T )=x0 

Dx(t) e ¯ S[x(t)] x(tN ) . . .  x(t1) 

G(tN ,  . . . ,  t1) = lim 
x(−T )=� 

x0 

x(T )=x0 
. 

T →∞(1−iε) Dx(t) e ¯ S[x(t)] 

x(−T )=x0 

(6.20)


In defining the Green’s functions, we made the explicit choice in Eq. (6.3) 
that we would use time-ordered products. Since the operators x(ti) do  not  in  
general commute, we presumably would have found a different answer if we had 
used a different ordering. Nonetheless, in our final result (6.20), the ordering is 
not apparent. The product x(tN ) . . .  x(t1) is just a product of c-numbers in the 
integrand, so the product would have the same value if the factors were written in 
any order. Thus, we see that the path integral naturally picks out the time-ordered 
product. It will turn out, however, that the time-ordered product is exactly what we 
will need to calculate cross sections, so there is a perfect fit between the technique 
and the needed output. 

Operator products which are not time-ordered are still well-defined, however, 
so there ought to be some path integral method that would allow one to calculate 
them if one wanted to. If you read over the previous derivation and think about 
what would be different if the operators were not time-ordered, you would find 
that nothing would change until the step that turns Eq. (6.16) into Eq. (6.17). 
For time-ordered operators, all the time arguments appearing in the exponents of 
Eq. (6.16) are positive semidefinite, since tn+1 ≥ tn. Thus, each matrix element is 
an evolution operator that evolves forward in time. If the operators were not time-
ordered, then some of the time arguments would be negative, corresponding to an 
evolution operator backwards in time. Such evolution operators can be expressed as 
path integrals, too, but the sum is over paths that go backwards in time. When the 
right-hand side of Eq. (6.17) is combined into a single path integral, as in Eq. (6.18), 
the paths x(t) would have to zigzag in time, sometimes going forward and sometimes 
going backwards, to reproduce the matrix elements in Eq. (6.16).  



� 

� 

�


�
 �
 � � �


�

′) . 

8.323 LECTURE NOTES 6, SPRING 2008 p. 6 
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GENERATING FUNCTIONALS: 

Eq. (6.20) can be conveniently rewritten by the use of a generating functional, 
defined by 

� T �
−TZ[J(t)] = lim Dx(t)e 

dt[L(x,ẋ)+J(t)x(t)] 
. 

T →∞(1−iε) −T 

Ti 
h̄ (6.21)


It will then be possible to express the Green’s functions as derivatives of the gener­
ating functional. 

The derivative of a functional is called a functional derivative, as you might 
guess, but the definition is slightly indirect. Crudely speaking the functional Z[J(t)] 
is a function of an infinite number of arguments, J(t) for  each  value of  t, so the  
derivative should look something like a partial derivative. Partial derivatives are 
defined in terms of the variation of the function when one argument is varied with 
the other arguments fixed, but that will not work for Z[J(t)]. If we vary J(t) for  
one value of t only, Z[J(t)] will not change at all, since the one point would have 
measure zero in the integration of Eq. (6.21).  So, the functional derivative is defined 
by first thinking about how a function of many variables changes when all of its 
variables are changed by a small amount. If a function of N variables is denoted 
by F (z1, . . . , zN ), then its first order Taylor expansion can be written 

N 

F (z1 + ∆z1, . . . , zN + ∆zN ) =  F (z1, . . . , zN ) +  
∂F 

∆zj + � (∆z 2) . (6.22)
∂zjj=1 

Eq. (6.22) could be used as the definition of ∂F/∂zj , which would be equivalent 
to the usual definition. The functional derivative δZ/δJ(t) is defined in analogy to 
Eq. (6.22): 

Z[J(t) + ∆J(t)] ≡ Z[J(t)] + dt′ 
δJ

δZ 
(t′)

∆J(t′) +  � (∆J2) . (6.23) 

To calculate the functional derivative of Eq. (6.21), we write � T 

Z[J(t) + ∆J(t)] = Dx(t)e

i 
h̄ 

T 

−T 
dt[L(x,ẋ)+[J(t)+∆J(t)]x(t)] 

−T 

T TT 
dt[L(x,ẋ)+J(t)x(t)] ii 

h̄ dt
′ ∆J(t′) x(t′)=
 Dx(t)e
 1 + 
−T 

h̄−T −T � T � T T 

= Z[J(t)] +

i

h̄ −T 

dt
′ ∆J(t′) 
i 
h̄ dt[L(x,ẋ)+J(t)x(t)] 

x(t
Dx(t)e
 −T 

−T 
(6.24) 
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Comparing Eqs. (6.23) and (6.24), one sees that 

δZ[J(t)]
= lim 

i 
� T 

Dx(t)e 
i 
� 
−
T

T 
dt[L(x,ẋ)+J(t)x(t)] 

x(t′) . (6.25)
δJ(t′) T →∞(1−iε) h̄ −T 

Thus, referring to Eq. (6.20), one sees that 

1 δZ[J(t)] � i � = G(t) . (6.26)
Z[J(t)] δJ(t) J=0 h̄

Since Eq. (6.25) implies that the functional differentiation δ/δJ(t′) brings  down  a  
factor of h̄

i x(t′) in the integrand, it is easy to see that successive functional differ­
entiations would bring down successive factors of h̄

i x(t). Thus, 

G(xN ,  . . . ,  x1) ≡ 〈0 |T{φ(xN ) . . .  φ(x1)}| 0〉 , 

=

(−ih̄)N δN Z[J(t)] � 
Z[J(t)] δJ(t1) . . . δJ(tN ) 

� 
J=0 

. 
(6.27)



