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QUANTIZATION OF THE
FREE SCALAR FIELD

1. The Lagrangian:

L= /d3m &Q
where 1 1
L = Z0,p01¢ — Zm?¢?
2 2
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2. Canonical Quantization:

oL

pi =
H=Y pigi—L
i

[9: > pj] = iR by
Schrodinger picture: 5
ifi— () = H (1)) -
If H is independent of time,
(1)) = e~ |y(0)) .
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Heisenberg picture:
@(t) — piHt/R @ e—tHt/R ’
so that
($]0@)|v) = (v)| 0] w()) -
Relativistic quantum field theory is usually done in the
Heisenberg picture: puts space and time on equal footing.
HEE Alan Guth
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3. Field Quantization by Lattice Approximation:

Motivation:

1) Can use canonical formulation exactly, instead of as a starting point for
a ‘“natural” generalization. Note that J;; might naturally generalize to
83(Z' — ), but the two expressions do not even have the same units. &;;
is dimensionless, while §3(Z’ — %) has units of 1/L3.

2) For interacting theories, the lattice formulation is the easiest way to understand
renormalization. When strong coupling is essential, as in QCD (Quantum
Chromodynamics) and the strong interactions, the lattice is even the best way
to calculate.
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Start with discrete lattice, spacing = a, and finite volume. Later take limits
a — 0 and V' — oco. For the free theory, these limits are trivial.

L= <,Av,
k

where
AV = d°

and

1. 1 1
Py = §¢2k — Evi¢k Vo — §m2¢2k ,

and the lattice derivative is defined by
P/ (ki) — Pk
Vig, = — &) Tk

a

where k’(k, 1) denotes the lattice site that is a distance a in the ith direction
from the lattice site k.
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Canonical momenta:
oL

elu?
Define a canonical momentum density:
_ Pk y
Tk = Ay = ¢ -

Hamiltonian:
= [ZP}«%] —L=> [Wk% - S&Pk] AV
k k
Canonical commutation relations:

[0k, okl =0, [pr, k] =0, and [¢r, pr] = th oKk -

In terms of the canonical momentum densities,

)

[Pk, ok] =0, [mp, ] =0, and [¢p , mx] = {;k :
I I I i :I::3GF:: ruary 14, 2008 o
Continuum limit:

k — Z
1 oL 8 0 -
T = L — w(f,t):i:qs(f,t).
AV 9¢y, O 0¢(Z, 1)

Hamiltonian becomes

HZZ[M% —S&Pk} AV =

H:/d% [mﬁ—%ﬂ .
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Canonical commutation relations:

since
/ 1 /
Z(SkkAV:{l if k' € R :/ Bz 83z - 1)
he® AV 0 otherwise ZeR

Note: Dirac delta function is defined by

/ Bz f(2)8(z — ') = {f(f’) if 2/ € R

zeR 0 otherwise.
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4. Review of Simple Harmonic Oscillator:

Choose m =1, so
1-2_1 2 2

1 1
H=pj—L=>p"+ -w¢
bq 2p 5 q
Canonical commutation relation:
lq, p] =ih

Define creation and annihilation operators

Y L I L
“VorT e Y TV Y 2D

[a,aw =1.

so that
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The Hamiltonian can be rewritten as
+ 1
H=hw|a'a+ 5 ,

with eigenstates |n) with eigenvalues

1

[H,aT] = hwa', [H, a] = —hwa,

Then

which implies that a lowers, and a raises, the eigenvalues of H by hw.

al0) =0,
H Bl Alan Guth
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Normalized nth excited state:
1 n
In) = ﬁ (CLT) In) ,
Solve for g and p:
h - hw
q= Z(a-ﬁ-aT) , D= —1 7(G_GT)
In the Heisenberg picture,
h —iwt T iwt
q(t) = 2—(ae + a'e*?)
w
and
h .
p(t) = (1) = —i1/ "= (ae™™" — afeie)
H Bl Alan Guth
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5. Quantization of the Scalar Field:

Continuum limit of the lattice:

_ oY
(1)

H:/d3a: [m-&P] ,
[6(z',t), ¢(Z,t)] =0 and [n(Z',t), m(Z,t)] =0,

= ¢(Z,t) ,

and

[d)(f’,t), w(a?,t)] =ihé(T — 7).
Use these relations to build the quantum theory.

Fourier transform:

and

H Bl Alan Guth
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Fourier inversion:
6@ = [ S R o(E
Z,t)=
(2m) ©
and 5
oy &k 5z ~p
m(Z,1) 2n)? e w(k,t)
(%, t) real = Hermitian quantum operator —>
F(—k,t) == (k,t) .
Heisenberg equations of motion:
Pd = 2
HEE Alan Guth
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Since h # 1, m has the units of an inverse length, not a mass. Fourier transform
obeys

General solution:

where

Reality ¢(—k,t) = ¢t (k,t) implies

$a(k) = B (—F) ,
SO L ~ . o
$(k,t) = pu(k)e™ "t + ¢] (=k )er !
Since m = ¢,
7(k,t) = —iwpd1(k)e wrt 4 zwpcj)I( k)ert |
I I I 8.323, Febr ua:y 14, -zooa o - _1 4—

These two equations can be solved simultaneously to give:

- 11~ - i .- ,
o1(k) = 5 [d)(k,t) + w—%(k,t)] @t

p

| o .
- /d3x o i(F T —w,t) {¢>(f,t) 4 Lﬁ(f,t)] :

Wp

Using canonical commutation relations,

[¢1(k ¢1(q /d3 /d3y e—z(k T —wyt) _1((7 T —wqt)

<ot + L a@.0), 650+ = x(7.0)

k q

—15-
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Using canonical commutation relations,

[¢1(k) /d3 /d3ye—z(k T —wgt) —1([1’ Y —wgt)

<o)+ = n@0. 05,0+ wiw@,t)}

q

/d3 / —z(k T —wit) —i(Zj-fj—wqt)
5 .
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But
/ gz e—iFDF — (27) 83(F + 7) ,

which requires § = —l;, but then the factor in curly brackets vanishes. Thus,

[¢1(E)a ¢1(§)] =0,

as expected if ¢1(E) is proportional to an annihilation operator.
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Similarly,

[0®), @) = 7 [ o (EDI—tamen) { 11 } |

I

Continuum normalization convention:

Define

so that
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Then

B d’k h 2y ik -r—w 7N ik —w
¢(:1:,t):/(27r)3 —{a(k)e(k W) 4 af(k)e ik kt)} .

ka

Note: in 2nd term, | changed variables of integration k — —k,

Canonical momentum density:

3 = —
_ d°k hﬂ {CL(E) ei(k-x—wkt) . aT(E)e_i(k.g‘;’_wkt)} .
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Creation and annihilation operators:

a(k) = /%/dsxe—i(ﬁ.@’_wt) [¢>(5g‘,t)+ wiw(f,t)} :
p

; :\/@ [ Fae® e lo@,0) - L@, 1) .
2% “p
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