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‘ Solution to Differential Equation I

Equation of motion:

@O +m?)g(z) = j(z) - (2.1)

Initial condition:

¢(z) = din() - (2.2)

Egs. (2.1) and (2.2) = unique solution for Heisenberg operator ¢(z).

Solution:

8(e) = dnla) + [ &'y Dr(e— )i(w) (23)
where Dg(z — y) is the retarded propagator:

(@ +m?)Dr(z —y) = —is“(z — y)
where Dp(z — y) = 0 if 2° < ¢° (retarded) .
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8.323 Lecture Notes 2: Particle Production by a Classical Source, Part Il (incomplete), p. 2.

We know that
Dr(x —y) = 0(z° — 4°) (0[[¢in(2) , din(y)]] 0)

3
= 0(z° — ¢°) d¢°p 1 [e—ip-(w—y) _ etp(z—y)
(27)3 2E,

P=E,—/Frm?
(2.5)

Note that Dr(z — y) is defined by the free wave equation. It can be written in
terms of [pin(z), ¢in(y)] as above, or in terms of [Gout() , Pout(y)], but not
in terms of [¢(x), ¢(y)].

0(z°—14°) in D is hard to deal with, but for z° = ¢ > ¢ we can set §(z°—°) = 1.

Then
d3 1 : .
#(0) = dnla) +1 [ dtyity) [ ) e
p
III.- :.I:::,;w::r h18,20;)8 o - _2_
Repeating,
d3 1 : .
8(2) = on(@) +1 [ d'yi0) | O a e w29
P
Define
i) = [ dyer? i) (2.7)
o) — - |
¢($) ¢|n(x)+ /(271')3 Z [](p)e P —](—p)e”’ x}
— d3p 1 =1 l ~ —ip-x
_/(2w)3 25, | | T s P
(2.8)
+ |af, () - —=3(-p) ””}
n 2Ep
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So
Gt () = e (D) o = 5(p)
Ve (2.9)
aly(B) = af () - ;Ep i(-p) ,
where
i(=p) =7"(p) , (2.10)

since j(z) is real, and
P’ = /B2 +m? . (2.11)

Thus, only the mass shell component (p° = /B2 + m?2) of j(p) results in particle
creation. This is just the classical phenomenon of resonance occurring in the
quantum field theory setting.
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‘ Unitary Transformation Between In and Out I

It is useful to construct a unitary transformation that relates in and out quantities.

Remembering that Dy (z —y) = 0(x® — 4°) (0 |[¢in(x) , din(y)]| 0, recall also that
[Pin(2) , din(y)] is @ c-number, so (0|[¢in(z), ¢in(y)]|0) = [¢in(z), din(y)]. So for

20 =t >ty
#(z) = Gour(w) = fin(w) + i / d'y [fn(2), dn(@)] 5() . (212)
If we define
B = / d*y 3 () éin(y) | (2.13)
then
(Zsout(iﬂ) — ¢in($) +1 [Qsin(x)a B] . (214)

But [¢in(x), B] is also a c-number, so we can write

Pout(x) = 77 in(z) €7 . (2.15)
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Since

Pout(z) = 7 gin(z) €7, (2.15)

we know from the uniqueness of the Fourier expansion that

aout(P) = e=*F ain(p)e'? . (2.16)

We can also verify that this equation is true by using

aout(ﬁ) = ain(ﬁ) + 2Ep j(p) (293)
with
lan(@), aly(@)] = (27?695 - 7) - (2.17)
T oo 6
‘ The S'-Matrix I
Define
S =eB (the FAMOUS S-Matrix) (2.18)

Mapping of states:
aout(]_j) |Oout> =0

S_lain(ﬁ)s |Oout> =0 (219)
— ain(ﬁ) S |Oout> =0

This implies, up to a phase, the S|Oout) = |0in). We can redefine the phase of |Ogut)
(or |0in)) so that

S [0out) = [Oin) - (2.20)
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On one particle states,

Slﬁout Saout( )lOOUt
= Sal,(F)S™" S |Oou)

(2.21)
a’in(ﬁ) |Oin>
— |ﬁin>

In general, we could show that
S|P1... BNou) = |P1--- Pnyin) - (2.22)
III.- :.I:::w:r h18,20;)8 o - _8_

‘ Normal Ordering of S “
We know that
) d4 . in

o [ i) 6n0) | .

It is useful to write S so that all the annihilation operators are on the right. Let

iBzi/d“yj(y)/%éT[am(p)e #Y 4 of ()Y =G+ F,

(2.24)
where
P=i [ s @), 6= [ GE —ipe) (29

where we recall that

3(p) = / dhy €Y j(y) (2.7)
III - of T gy _9_

II 8.323, March 18, 2008




8.323 Lecture Notes 2: Particle Production by a Classical Source, Part Il (incomplete), p. 6.

So _
S =¢'B =G (2.26)

F and G do not commute, but [F', G] is a c-number and therefore commutes with
both F' and G. Whenever F' and G commute with [F', G],

F+G _ _F _G_—1[F,G] ) (2.27)

III.- Alan Guth
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1
Aside about eF1tG = eFeGe 2 Gl

To prove this identity, define
Hi(\) = 2FHD) | [h(2) = F 2G e NIFG] (2.28)
Clearly H1(0) = H>(0) = I (identity operator), and

dH1(\)
dx

=(F+ G)Hi(N) . (2.29)
So if we can show that H»()) obeys the same differential equation as above, then
it follows that H>(\) = Hi(\). You'll get to show this on your next problem set.

This is actually a special case of the Baker-Campbell-Hausdorff formula, which
has the general form

1 .
CF CG _ €F+G+E[F,G]+...(|terated commutators) ) (230)

We'll prove this, too, on a problem set soon.
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Returning to the main argument:
So

S =eiB =G | (2.26)
F and G do not commute, but [F', G] is a c-number and therefore commutes with
both F' and G. Whenever F' and G commute with [F', G],

eFHCG = oFGem:lF Gl | (2.27)
Recalling
d3p 1 + / d3p 1
F=i 7 (D ) G=1 (= in D ) 2.25
'] Gny 2Ep](p)a.n(10) ]y \/EJ( p)ain(P) » (2.25)

one sees that
d3p 1 d3q 1

[F,q]=— 3(p) (—a) [a},(B), ain(@))]
(2m)3 \/2E, (27)3 \/2E, —_—
—(2m)386®(p —7q) (2.31)
dBp 1
(2n)? 2E, 5(p) I
III 8.::3,Mar h18,20;)8 o - —12—
So
. 1 d3p 1 2
S — B — _- — |5 F oG 2.32
e exp{ 2/(%)3 2E, 3(p)] }6 e (2.32)
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Vacuum to Vacuum Probability

The probability that no particles are produced by the source is given by
P(no particle production) = |(Oout [0in )|* - (2.33)

Logic: physical state is |0;,), independent of time (in the Heisenberg picture).
|Oout) = state with no particles for ¢ > to.

S0, |(Oout |Oin }|? is the probability that the physical state of the system would
be measured to have 0 particles at ¢ > t,. To express the answer in terms
of the S-matrix, recall

Oout) = S71|0n) = (Oout| = (Oin| S. (2.34)
So
<00ut |0in> = <0in |S| 0in>
1 d3p 1
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