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‘ Transformations of the Dirac Field I

Let us assume that we are trying to construct a free field 1), (x) for electrons which,
like the free field ¢(x) for scalar particles, is linear in creation and annihilation
operators. Then we expect a nonzero value for

(0 |tha(z)| 1 electron, p = 0) .

Under rotations the state(s) on the right transform under the spin-1 represen-
tation, so 1, (x) must contain this representation, or else the matrix element
vanishes (i.e. the only spin that can be added to spin-1 to get spin-0 is spin-3 ).
But t,(x) must transform under some representation of the Lorentz group,

generated by
j_|_ =
(41)

-

J_ =

<

.
_R) K’:z’(j_—L) .

The simplest allowed representations are (j;,j_) = (3,0) or (0,5). We will use
both.
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Mixing of (%, O) and (O,

Note that under a parity transformation,

In addition, recall that the 4-vector rep is (%, %) So if x transforms under, say, the

(3.0) rep, then 9, x must belong to the (3,3) x (3,0) rep, which contains

the (0, %) rep but not the (3,0). Thus, d,x must interchange these two reps.
H Bl Alan Guth
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The Lorentz Group and SL(2,C)

From the ($,0) or (0,1) representations, one can see the relation between the

proper orthochronous Lorentz group Ll and SL(2,C).
For the (3,0) rep,

29

.1 - .1 , i

J+:§6:, J_:O — ng&’, K:—§O_",
where the o; are the (traceless) Pauli spin matrices. Exponentiation of the o;
with imaginary coefficients produces all unitary determinant one 2 x 2 matrices,
or SU(2). Since e=2™J: = —1, there are 2 matrices in SU(2) for every rotation
group element, so the rotation group is SU(2)/Zs. The Lorentz group includes
the exponentiation of the o; matrices with arbitrary complex coefficients, so
unitarity is lost. Exponentiation generates SL(2,C), the group of complex 2 x 2
matrices with determinant 1. One still has e=27*/= = —1 and the resulting 2:1
relationship, so

Ll =5L(2,0)/Z, . (42)
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‘ The Dirac Field I

Let ¢ (z) be a 2-component field, represented as a 1 x 2 column vector,

transforming according to the (3,0) rep.

Let ©¥r(x) be a 2-component field, represented as a 1 x 2 column vector,

transforming according to the (0, 3) rep.

The Dirac field ), (x) is 4-component field, represented as a 1 x 4 column vector,
constructed by placing ¥ (x) on top of ¥g(x):

P1()
_ | Ye(@) | _ [ Yr(=)
Yalz) = Y3(x) | <¢R($>) (43)
Pa()
L [ .

‘ The Dirac Matrices I

Dirac discovered that one can construct the (3,0) + (0, 3) representation of the
Lorentz group by starting with four 4 x4 “Dirac” matrices v*, chosen to satisfy

{77} = 29", (44)

where the curly brackets denote the anticommutator, and the right-hand side
is multiplied by an implicit 4 x 4 identity matrix. Given Eq. (44), the matrices

1

gHv
1

[, 7] (45)
automatically have the Lorentz group commutation relations,
[SHY, SP9] = 4i{g”” S } v
po

where the pairs of subscripts denote antisymmetrizations as defined by
Eq. (21), 4/13/06.

HEE Alan Guth
I I i of T gy
8.323, April 24 & 29, 2008 _5_




Alan Guth, 8323 Lecture, April 24 & 29, 2008, p. 4.

‘ Choice of Dirac Matrix Conventions I

Following Peskin and Schroeder, we will use

0 __ 0 1 i 0 O'i
Y _<1 0 9 v = _O.i 0 ’ (46)

where the entries in 70 represent 2 x 2 blocks of zeros or the 2 x 2 identity matrix,
and the o' represent the Pauli spin matrices,

) B U} R R B

This is called the Weyl or the chiral representation. Another popular choice is to
diagonalize +°.

HEE Alan Guth
I I ts i of T gy 6
8.323, April 24 & 29, 2008 —U—

‘ Properties of this Choice of Dirac Matrices I

With some calculation, one finds that

1 1 k ; k
Jk:§€kémsém:§(ao ;)k), Kk:SOk::_%(O' Ok>.

This gives

1 1 k 1 1
Ji:§(J’f+z’K’f):§<"O 8) Jﬁzi(Jk—iK’“)zi(g fk)
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One-Particle States and the Poincare Group

A one-particle state must remain a one-particle state under a Poincaré transforma-
tion, so the space of one-particle states forms a representation of the Poincaré

group.

B = P,P*" is a Casimir operator of the Poincaré group, so a single particle has a
unique value of P2, P2 = m?, where m is called the mass of the particle.

Particles seem to also have a definite spin. Is this a Casimir operator?

Answer: Yes. The operator is
1
W2 =W, WF | where W, = 5eWMJ“*Pf’ : (50)
W, is called the Pauli-Lubanski pseudovector. In the rest frame of P* one has

W?2 = —m? ’jr One knows that [W?, J#] = 0, since W, transforms as a

vector under Lorentz transformations. It is also translation-invariant, since
[Ju)\ Pp} _’L( p/\PV_ngP/\) :

and the sum with €,, 1, will vanish when two indices are contracted with P.
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itute of T ay 8

8.323, April 24 & 29, 2008

One-Particle Representations
of the Poincaré Group

Consider first P2 > 0, i.e., massive particles.
Diagonalize P* and consider a particle in its rest frame, P* = (m,0,0,0).

The subgroup of the Lorentz group that leaves P* invariant is called the little
group.
In this case, the little group is the rotation group.

But we know about the rotation group!

The particle must have spin j, an integer or half-integer, with 25 4+ 1 spin states
described by s = J?, with s = —j,—j + 1,... ,j. (The eigenvalue of J* is
often called m, but m = mass.)

(p=0,8|U(R(",0)|p=0,s)= [ —zeﬁ.leS = Dy, (R(1,0)) .
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States with Nonzero PP

By Wigner's theorem, we know that we should expect to construct a unitary
representation of the Poincare group in the Hilbert space. (Anti-unitary is
excluded here, since the group is continuous.)

We can therefore describe states with p # 0 by boosting the p = 0 states. So we
can define

p,s) =U(Bp)|p =0,5) , (52)

where By is a boost that transforms the rest vector to the specified momentum
p. Bp is not uniquely defined by this criterion.

For Eq. (52) to be unitary, we must be using the covariant normalization:

<ﬁ,78, |ﬁ78> - 2Eﬁ (27T)3 68’5 6(3)(ﬁ/ _ﬁ) .

HEE Alan Guth
I I ts i of T gy 1
8.323, April 24 & 29, 2008 - O_

Canonical vs. Helicity Basis

There are two standard ways to choose Bj, and therefore to define a basis for the
Hilbert space of 1-particle states:

Canonical: | boost in direction of p:

BY = B(p,£(Ip))) = e K, (53)

where £(|p]) is the rapidity associated with p, tanh§ = |p|/E.

Helici‘l'y: boost in positive z-direction, then rotate in the z-p plane (along

the shorter of the two options):

B = R(p) B. (£(17))) - (54)

This process preserves the helicity, the component of the spin in the

direction of the momentum. Thus, s = helicity.
_11_
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‘ Lorentz Transformations of Basis States I

Translations are no problem, since these are eigenstates of momentum.

To apply a Lorentz transformation, use
UA)|p,s) =UM)U(Bp) [P =0,s)
= U(Bap) U (Bag) U(N) U(Bp) [P =0,) -

Now define the Wigner rotation

Ry (A,P) = Bz ABp . (55)

Note that Ry maps a rest vector to a rest vector, so it is a rotation. But we
know about rotations!

UA)|B,s) =Y U(Bap) |[F=0,5)(F=0,s|U(Rw(A,5))|7 =0,5) .

s/
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UM [P, s) =Y U(Bpp) [ =0,5)(F =0, |U(Rw(A,7))| 7 =0,s) .

U(A)|p,s) =Y |AB, ") Dors(Rw (A, 5)) - (56)

S/
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Basis States for 1-Particle Hilbert Space

(Review, Massive Particles)

Basis States in Rest Frame:

(B =0, |U(R(2,0)|F = 0,5) = |77 | = Dy(R(1.0)) .
(51)
Basis States in Arbitrary Frame:
‘ﬁas> EU(Bﬁ)|ﬁ:075> ) (52)
where Bj is a boost (canonical or helicity) that boosts a rest vector to p.
IIIII 8.323, April 24 & 29; Jous - —14—

‘ Lorentz Transformations of Basis States I

U(A)[7,5) = |AB,s") Dys (Rw (A, 7)) (56)

S

where

Ry (A,P) = By; ABg . (55)

is called the Wigner rotation.

Recall: Bj is the standard boost, in either the canonical or helicity basis.
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‘ Multiparticle States I

Free particle Fock space basis vectors:

|B181,... ,PNSN) -
If two kets |11) and |)2) are identical except for the ordering of the particles,
they represent the same physical state. For scalar particles, [¢1) = [12).

We will learn (soon!) that for spin-% particles, [11) = & |1)2), depending on
whether the permutation is even (4) or odd (-).

Lorentz Transformations: each particle transforms independently.

U(A) |ﬁlsl7-" aﬁNSN> =

= =2 /
{Z/}|Aplsl,... S ADNSN) (57)

X Ds’lsl (RW(A7ﬁ1>) 00 'Ds%,sN (RW(A7ﬁN>) :

I H Bl Alan Guth
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Transformation of Creation

and Annihilation Operators

UNal  (Bn) /2E5y P151,... ,DN-18N—1) =
> al, (APN) 2Eagy [AB1sY, .- ABN-_18y_1)
{s}}

X Ds’lsl (RW(A7ﬁ1)) 00 'DS’N.SN (RW(AaﬁN))
= Zaih(AﬁN) V2Engy U(A) IP151, -+ s Pn—158-1) Dyr_sy (Rw (A, BN))
SN

SO

U(A)al, () V2E5y ) =
> al, (ABN) v/2Erpy Doy (R (A Bw))U(A) ) -

HEE Alan Guth
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U(M)al, (Bn) /2E5, ) =

So,

UW)alE) U W) = [ 2L Y ol (47) Do (B (07) - | (58)

Taking the adjoint:

U)aB)UA) = [ FF > Do (Rw(A,P) ax(8F), | (59)

where | used the unitarity of D/ :

HEE Alan Guth
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‘ Massless Particles I

What is the “little group” when P2 = 0, so there is no rest frame?

Let p* = (w,0,0,w)

Little group: generated by J3, M*!, and M?, where
J3 — Ji2
M=K!_ j2 — _jlo ji3 (60)
M=K?+J'=-J°+J%.

Algebra of little group:
[Ml, MQ] =0

2, A1) = ing? 1)
[J?, M?] = —iM" .
The little group is E(2), the Euclidean group (rotations and translations in R?)
Wi e 1o
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Representations of E(2)

Casimir Operator: M2 = (M1)2 + (M?)2

¢ Reps with M?2 #0. M could then be rotated by any amount, so the rep is
infinite dimensional. This would involve an infinite number of states with the
same momentum, and does not correspond to anything known physically.

¢ Finite-dimensional (1D) representations with M2 = 0. When M2 = 0, J3
becomes a Casimir operator, since [J®, M?] is proportional to M7. So in this
case
M'=M?=0
J3 = constant € Z/2 .

(since €4™7° = 1 in SL(2, C)) So, for m = 0 the little group does not mix
different s values. The helicity h of a massless particle is Lorentz-invariant, so
the photon can have h = +1, but does not need an h = 0 state. The h = +1
states are related by parity, but not by Lorentz transformations. If neutrinos
were massless, they could have only h = —3 (“left-handed” only).

I I I H Bl Alan Guth
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Dirac Field: Spacetime Dependence

We assume that 1, (z) is linear in creation and annihilation operators.

Electrons are charged. The field should have a definite charge, to construct
charge-conserving interactions. So let 1,(x) contain annihilation operators
for electrons. Then it must contain creation operators for antiparticles, i.e.
positrons. (This is like the charged scalar field.) Then ] (x) will create
electrons and annihilate positrons.

The field must satisfy:

e Fr o (y) e =tz +y) -
U™ (M) a(z)U(A) = Ay otp(A7  2)
where ,
Ay gy = Moy = e~ 295" with §1 = % ", Y] (63)

I I I HEE Alan Guth
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Ya(z) = € 9 (0) e~ 0"

But ,(0) is linear in electron annihilation operators as(p) and positron creation
operators bl(7), so write

00 = [ ot~ S A0) )+ HG) )}

eiPNx” as(ﬁ) e_iP”mM = e_ip“wuas(ﬁ) )

eiPua:“ b‘[‘ (ﬁ) e—iPM:c“ _ eip“a:“b'i‘ (ﬁ) ,

S

But

SO

where p = +./|p|? + m2. The choice p° > 0 will be important.

III.- Alan Guth
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Lorentz Transformation of 1, ()

TH(A)a(@)U(A) = Ay s (A )

SO

U(A)a(@)UH(A) = AL (A 2)

3 [—
/ d \/_ Z { EAp (RW(A7ﬁ))as’(Aﬁ)UZ(ﬁ)e_ip'w aF oo } o
Now let § = Ap, and use
&Bp 1 [ dg 1
[ @i, = | Gy
U(A) o (z)UH(A) =

/ = 1 D, Ap Vs () e—iA T a)
@) JEZ,{ 2 (B (A, P))ay @ F)e @0 ) |

IIII- Alan Guth
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)wa(x)U—l(A) =
/ ﬁz{ L (Rw (A, B)) as (7)us (F)e " 02 +} :

s,s’

U(A

But this must equal
Ailab’gbb(l\ x) =
29

[ B o).

These two expressions match if

Ay b (M) ZU Rw (A, 7)) ,
or equivalently,
ug(AP) = Ay o (B)D3y (Rw (A, 5)) - (65)
III.- :I::3GA:‘IZ4&29- zoo:” - —24—

Rotations in Rest Frame (p = 0):

uS(A) = Ay o ui (B)D3 L (Rw (A, B)) - (65)

In the rest frame p = 0, A = R (rotation matrix), so Ap =0, and By = Bpy =1,
so Rw = By;AB; = R. So

uS(F =0) = Az ,,(R)uf (5 = 0) D;L(R) .

(@)
(o) | _ (@)
Val2) = (o) - () )

IIII- Alan Guth
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We know that for rotations, A%’ab are just the matrices generated by

1_]- O'i 0
J_§(0 O'i),

and the Dy (R) matrices are the same! So the above equation can be rewritten
as )
U'L,as — Dab(R) uL,bS D

for every R. Since the spin—% representation is irreducible, the only matrices that
commute with all D(R) are multiples of the identity. Choose

Y(R) , or ur, D(R) = D(R) uy,

s’s

up, (P =0)=vmd; . (66)

Boosting from the rest frame: For p =0, let A = Bz, so Ap = ¢. Then
Rw(A,p) = ByAB; =B;' Bz I =1,
So

ue(q) = Ag op(Bg) up(p = 0) . (67)
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