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‘ Announcements I

Corrections to Problem Set 9:

Problem 2: Notational improvement. The two equations should read:
Ay (Bs()) = e=1K" = =i15™

A1 (R3(9)) = en i = g iI5t

Problem 4: Should read S* = % [y", ~4”] in the preamble, and identity (vi)

should read
Pd=2p-q—qgp=p-q—2iS" puq, .
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Summary of Where We Are I

Poincaré symmetry implies

e o (y) e = (z +y)
TH(A)Ya(@)U(A) = Mapihp (A1

aj) )

(68)

where M (A) is a representation of the Lorentz group. Following Dirac we have

chosen
_ %‘wm’slw

: vl v
Map = Ay o = , with S¥ 21[7“77]

Y

(69)

and following P&S we have made a particular choice of the v-matrices. P2
is a Casimir operator, which we take to equal m?, the square of the particle

mass, and we assume that PY > 0.
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Creation operators transform as
D Ep L L
U)af@) U™ (A) = /5= D ali(AF) Dos(Rw(A,5)) - | (70)
p g’
Taking the adjoint
— Erp _ q
UM asB)U(8) = [ D aw(8F) Dy (Rw (A, P))
p s’
(71)
Erp -1
T Eﬁ %:Dss’ (RW(A,]?)) CLS’(AP) )
IIIII 8.323, May 1, 2008 o —3—




Alan Guth, 8.323 Lecture, May 1, 2008, p. 3.

Expand the field as

V(@) = / i Jﬁ >~ {au(B) ua®) e + b (F) vi(F) ™" |

(72
where p® = +./|p|2 +m2. The sign of p°, which follows from our assumption that
the operator P was positive, will be important. The above equations imply that

us(AP) = Ay o ui (B)Dyh (Rw (A, ) - (73)
Writing v, (z) as
o) _ (vt
_ 2(L _ (T
Val@) = Ys(z) | (ﬂJR(fE)) ’ (74)
Ya(x)
I e L

we found that rotations in the rest frame implied that

uy o =0) =vmd; , (75)

up to an arbitrary normalization. This is often written as

=0 =vime where st = (). e = (1) | @

where £ corresponds to spin-up, and £~ corresponds to spin-down, along the
z-axis. The constraints on ug are identical, so we similarly choose

(B = 0) = Vm e . (77)

In both cases the normalization is an arbitrary convention, and we can choose them
to have the same normalization without any loss of generality.
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To discuss nonzero momenta, we boost from the rest frame

w@) = vy ) () - (79

We will calculate this explicitly in the canonical basis:

Ay(Bj) =e MK (79)

where 7 is the rapidity, with coshn = FE/m, sinhn = |p|/m, and tanhn = v.
(Earlier | called the rapidity &, but £ is now being used for the basis spinors.)

In our basis ' i
KJ:JOJ:—% (‘B _Uj) .
Al(Bﬁ)zeXp{ln<_ﬁ'6 04)}

2 2 0 p-0
Note that(A 7)? =1, so
_6_
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A%(Bﬁ)zexp{%n(_po g ]3(.)5)}
=SNG s
ra(3) (7 a0a) +
(g)+<—ﬁ05 p(-)a)smh<2>

To simplify, look at 2 x 2 blocks:

A1 (Bp) = (AOL AOR)’ where Aé = cosh <g> F p-F sinh (g) .

Then remember that e = (E & |5|)/m, so

1 E D E—|p
—{ nalzl NP |p|[1+;a-5]}.
2 m m

Ap =
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1 E+|p . L E—|p L
AL:§{ |p|[1—p~a]—l— |p|[1+p~a]}.
m m
The eigenvalues of p - & are £1, so
BBl ifp.5=1
Ap =

E+|p| ifp-od=-—1

_ |E-p-d

B m

If the eigenvalues of a matrix are positive, we define its square root by diagonalizing
the matrix and taking the positive square root of its eigenvalues.
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Similarly,

[E+5 -6
Ap = BT
m

The notation can be simplified further by defining 4-vectors o# = (1,0%) and
o = (1,—0?), so

and finally

u(7) = (Wg) . (80)
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Useful Identities for u*(p)

(p-o)(p-7)=p° =m’ (81)
Normalization:
ul () w(B) = (¢'vp o €'V 5) (\/—Vags) :
=&M(p-o+p-5)¢ (82)
= 2F5 £¢ .
u' (5) 7" u(p) = a(p) u(@)
=¢&'p-avp-aE+ENp-ayp- o€ (83)
= 2m&ie .
III.- :Isz:wlhﬂ 2008 o _10_
@)= (V2] = | Se@w@=rrem, | 69
where @*(p) = u*T(5)7°. For the v's,
uj(AP) = Ay oy ui (B)Dyk (Rw (A, 7)) . (73)
is replaced by
Vi (AP) = Ay o 05 (B)Dgy* (Rw (A, ) (85)
IIIiI- :Iszscmthw 2008 o =1lil=
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From looking at the rest frame, we use

D*(R) = o*D(R)o? ,
and following the same logic that we used to show that u,®(p) must be a
multiple of the identity, here we show that (vo?),* must be a multiple of the
identity. The normalization is arbitrary, so we can write

Vol =0) = —ivmog B, vk =0)=ivmog,fr, (86)

where (3; and [Br are used here to indicate our freedom to choose the
normalization of these terms arbitrarily, as far as the Lorentz transformations
of the field are concerned. We will soon find, however, that these constants
are constrained.

Boosting to an arbitrary momentum,

i) = [ VIIi0* €8
D= ( X5aCiotenin) 1
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where as before

- () e (1)

describe spin-up and spin-down particles. We can also define

n® = —io2€s (88)

and the two spinors n®, for s = + and s = —, will form a pair of orthonormal
vectors in the space of 2-component spinors. Then one has

The spin sum for the v's then becomes

_ * . 2
Sewvo- (i ) | @
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Spin and Statistics

v¢ A key result of quantum field theory is the Spin-Statistics Theorem, which
says that particles of integer spin must be bosons, while particles of half-integer
spin must be fermions. (Note that there is no such theorem in nonrelativistic
quantum theory.)

v A full proof is beyond this course. See, for example, PCT, Spin & Statistics,
and All That, by R.F. Streater and Arthur S. Wightman, 1964. Despite the
informal title and modest length, this book is not easy reading for most of us.

+¢ We will, however, demonstrate a limited version of this theorem. We will
consider the possibility that the Dirac particles are either bosons or fermions,
and show that only the second choice gives a consistent theory.
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The Boson Hypothesis:
Dirac Field Commutators

Consider first the boson possibility. Bosons are like the scalar particles that we have
studied, with creation/annihilation operator commutators

[a*(B) , a"(q)] = (2m)% 67 6 (B — 7) .
(91h)
[°(B), b"1(q)] = (2m)? 67 6 (B — 7) ,

with other commutators ([a, a], [b, b], and their adjoints) vanishing. The “h”
in the equation number stands for “hypothesis”. It will turn out NOT to be
consistent. We will now compute the equal-time commutator

[4(2,0), ¢"(7,0)]

which is clearly a spacelike separation. There are two reasons why this should
vanish.
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Why the Commutator Should Vanish

at Spacelike Separations

1)| The fields should represent measurable quantities, so a nonzero commutator

implies an uncertainty principle — a precise measurement of one causes the
other to become completely uncertain. But if this happens at spacelike
separations, then information can be transmitted faster than light.

2) | Later we will use these fields to describe terms in an interaction Hamiltonian,

and perturbation theory will allow us to express evolution (and hence scattering
cross sections) in terms of time-ordered products. However, the time-ordering
between 2 spacetime points is ambiguous if they are spacelike separated, so
a unique answer is found only if the operators commute. So, the Lorentz-
invariance of interactions calculated in QFT would be violated if fields did not
commute at spacelike separations.

The requirement that commutators vanish at spacelike

separations is called CAUSALIW,
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‘ Calculation of the Commutator I

From Eq. (72),

(92)
So
4 - d3pd3q 1
[¥(@0), $(5,0) _/ (2m)® \/(2E5) (2E3)
x e @T=TD N ([a"(F), a*1(@)] u" (7) @ (7) (93)

—17-
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Using the creation/annihilation operator commutators (91h) and the spin sums (84)
and (90), this becomes

. o dBp 1 sz
[v#0). 8(G.0)] = [ 5 5™ D
[ m (1 + BLS) Ep (1-10cl) =7 -3 (1+16cl?) ]
By (1~ 16al?) +5 7 (1+18a?) m(1+ BrB})

(94)

The expression has particle contributions, with no §'s, and antiparticle contribu-
tions, with 2 3's. The killer terms are the ones in p - &, since the coefficients
of particles and antiparticles add. Looking back to Eq. (93), one sees that the
antiparticle contribution has 2 sign changes relative to the particle contribution:
the signs of § and ¢ are reversed, and the commutator has the creation operator
first.
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The term proportional to p - & does not vanish when integrated, as it is proportional
to

- d3p |
—E ip-(Z—-79) 95
10 V/(Qw)i% 2Eﬁe , (95)

where the integral does not vanish.
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The Fermion Hypothesis:
Dirac Field Anti-commutators

This time let us assume that the particles are fermions, which means that only one

particle can have a specified momentum and spin, and that the multi-particle
basis state

|P181,... ,BPNSN)

is antisymmetric in its particle labels. For example,

\ﬁ1 51, D2 82) = - |ﬁ2 52,D1 81> . (96)

For fermions the creation and annihilation operators satisfy anticommutation
relations 5 5
{a*(@), " (@)} = 21)° 6™ 6 (F - 7) .

(97)
{o°(B), b"(@)} = (2m)* 6" 6O (5 — q) ,
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e

Note that the antisymmetry of states, as in Eq. (96), implies that

a®1(B1) ™' (B2) = —a®"(P2) a®*1(51) , (98)

since the creation operators create multiparticle states with the particle
labels in the same order as the operators. Thus there is no possibility that
fermion creation/annihilation operators could obey commutation rather than
anticommutation relations.

Since the fields are linear in creation and annihilation operators, if the creation
and annihilation operators satisfy anticommutation relations, then so must the
fields.

If the fields anticommute at spacelike separations, that is okay. It means that
any measurable quantity — any quantity that can appear in the Hamiltonian
— must be bilinear in the fermi fields, and then they will commute. We might
have expected this anyway for a fermi field, since under a 360° rotation it turns
into minus itself! If such a field were measurable, what would it look like?

H Bl Alan Guth
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‘ Calculation of the Anticommutator I

The calculation looks much like the previous one, with one key difference. In the
boson calculation we found that the antiparticle contribution was proportional
to [b°T(—p), b*(—7)], which produced a minus sign because the creation and
annihilation operators were not in their usual order. This time, however, we
find an anticommutator instead, so there is no change in sign. Our final
answer will be identical to the previous one, except that the entire antiparticle
contribution will change sign:

53 —7)
{( 0)} = / o) 32E~ %

[ m (1 — BrBx) Esz (1+160*) =7 -6 (1 —|6cl?) ]
Ez (14 |Br*) +8 -3 (1 —|BrI?) m (1 — BrB})

(99)
The change in sign makes all the difference!
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‘ Consequences of the Calculation I

5@ —7)
{u( 0)} = / 27 32E~ .

[ m (1 — BLBR) Ez (1+16cP) —ﬁ-5(1—|ﬁLl2)]
Ep (1+|8rI?) +P5 -6 (1 —8rI?) m (1 — BrB7)
(99)
¢ The previously fatal § - & terms will cancel if
Be|” = 1Br? =1 (100)
Y¢ The terms in m will cancel as long as 31, and 3r have the same phase. Thus,
we require
O = Br . (101)
From now on we will adopt the standard phase convention,
O, =0r=1. (102)
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B (F=7)
L 0)} = / 27?32E~ %

{ m (1 — BrLBR) Ez (14 |6c?) -8 -3 (1—|6L) ]
Es (14 |Br*) +8 -3 (1—|BrI?) m (1 — BrB)

(99)

¢ The terms in Ej do not cancel, but notice that the £ cancels the same factor
in the denominator, producing a Dirac d-function which vanishes when ¥ # 4.
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