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Parity: X — —T

Group Properties:

Parity transformation matrix (on 4-vectors):

1 0 0 o
0 -1 0 0

P=1o0 o = 0] (142)
00 0 -1

Note that this is the transformation matrix, not the generator. Discrete
transformations do not have generators.
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1 0 0 0
0O -1 0 O
P = 0 0 -1 0 (142)
0 0 0 -1
The Lorentz generators have the form
0 0 0 O 0 =z = =
2 0 z =z = = z 0 0 O
J_Oa:a:x K_xOOO d4)
0 z =z =z z 0 0 O
where = denotes a possibly nonzero entry. This implies that
[:P,j]zo, {?,K’}:o. (144)
I I I I I 8.323, May 8,‘;008: -Lect::eTslides 6" _2_
What about 4-momentum P* and parity P?
Obviously,
{P.B}=0, [P, P]=0. (145)

But what if we want to show this?

The complication is that we need a realization of the Poincaré group in which trans-
lations as well as boosts and rotations are represented linearly. Translations on
coordinate 4-vectors are not linear. To find the commutators of P, we used
the representation of the operators on the Hilbert space of a scalar field.

HEE Alan Guth
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The transformation properties are described by

e Por @ g(F,t) ePor® = ¢(Z +a, 1) (146)

iPJ to qb(:)_:’,t) e—inpto _ ¢(9§’,t+ to) ,

where here P is shorthand for U( P), the unitary operator in the Hilbert space
that represents parity.

Note that P&S assume that P> = 1, so P~ = P, but | will not make this
assumption. The argument that PP=1is really the same as the argument
that e=2™/= = 1 (i.e., classically the transformation is the identity), and we
know that e =2™/= £ 1. We will find that we can define phases so that P =1,

L . : 2
but it will be possible to define phases so that 7~ = 1, where 7 denotes
time reversal.

. - Alan Guth
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To learn how P affects P, define P2 = P~ B, b P, Then

Op_

. BP - -BP - _ _.—’ = 5 _ . .
e Por@ (7 1) ePor® = Pl emtor:d p o(Z,t) Pt etbordp

(147)
o)
P! Py P =—P,, (148)
Similarly one can show that
-1 p0 p _ po
PP, ,P=F,, . (149)
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Operation of P on States:

P anticommutes with P and I?, and commutes with .J. So

P |p=0,s=+) = n, |Pp=0,5=+) ,

(150)

where 7, is an undetermined phase. In the rest frame we can use the standard

nonrelativistic quantum theory description of rotations, so
|P=0, s=—) = (J; —iJy) |P=0,s=+) ,

SO
{J) |ﬁ:0, S:—> = na |ﬁ:0, S:—> 5

with the same phase 7,. For an arbitrary momentum, |¢, s) = U(Bz) |[p=0, s),

so using the canonical representation of boosts

P |3, s) = PU(By) P~ " P |p=0,s) = 0, U(B_5) |p=0, 5)

- (151)
= Na ‘_Q7 S> 0
(It is more complicated in the helicity representation!)
I HEE Alan Guth . o
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For antiparticles the story repeats, but the phase is not necessarily the same:

P |q)78>b =T |_§7S>b y

(152)

where the subscript b denotes an antiparticle state. Assuming further that
multiparticle states transform as independent particles (i.e., all momenta are
reversed, all spins remain the same, and each particle (antiparticle) contributes
a factor n, (1)), then

P as(F) P=naas(—p), P al(@) P=n’d(-p)

L ) e S (153)
P bs(p> P = b bs(_p> ) P bs(p) P= My bs(_p) .

H Bl Alan Guth
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Operation of P on ¢ (x):

) V2 2
Then, using Eq. (153),
Pl po (T, 1) P =
4 5) e~ Pur” %1t =\ s (=\ ipuat
/( \/ﬁ {na as(—P) ug () e=P»" + 1y bL(—P) vs (B) e } .
Let £ = (—&,t), and change variables of integration by substituting 7 by —p. Then
Pl (Z,t)P =

d3p 1 =\ g P L % o\ s N ip gk
| G = (e @ By (@) o) e
p S

. - Alan Guth
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Properties of u°(—p) and v¥(—p):

From Egs. (80) and (87),

w@ = (V%) v - (MFA) | s

where we have set 6, = g = 1 Then

wien) = (VBZL),  wen- (R

Recalling that

one has

u'(=p) =" (),  v(=F) = —"v(F), (155)
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Back to Operation of 7 on v(x):

P o (Z,1) P =

d3p 1 = S/=\ —ip., M " 5 o i
7 [ G e @ ) b5 ) e}
P s

(156)

Requirement of Causality: | IF' the theory is going to be parity invariant,
then

PrLr=9. (157)

So if & contains ¥, it must also contain ’P_ldJ P. But all terms in & must
be mutually causal, meaning that they commute at spacelike separations. Thus
Pt 1 P must anticommute with ¢/ and v at spacelike separations.

HEE Alan Guth
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When we constructed 1) and insisted that ¢ and v be causal, at Eq. (99), we found
that the antiparticle contribution was constrained: [Sr = [, with |GL| =
|Br| = 1. But there was an arbitrary phase, which we fixed by choosing
Br = Br = 1. But if we now calculate {’P_l@ba(f,O)’P, @E(Q’,O)} we will

find that it will vanish only if n, = —n;. Thus, if parity is a valid symmetry,
we require

Mo = —1, (158)

and then

PHp(Z,1) P = na V" (—7, 1) . (159)

Electrons and positrons have opposite intrinsic parity.

H Bl Alan Guth
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Parity and Dirac Field Bilinears

Since 1, (z) and 1),(x) each have 4 components, there are 16 possible Dirac field
bilinears. They can be arranged into 5 quantities with well-defined Lorentz
transformation properties:

P, Py, Wy, Y, Y, Wty (160)

Each quantity shown is hermitian. The number of independent components is
1, 4, 6, 4, and 1, respectively, totaling 16 as expected.

. - Alan Guth
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Given that P~ (Z,t) P = n, v° (—Z, t), it is straightforward to find that

P W:P +0(-z,1) P rigpysp P = -0 (-2, ¢

P lpyip P = — ©< 7t :P mwf’w-+©< 7t >

Pl P =+0(-z ) P00y P = —O(-7,¢)

7’_12'15[70,71}2#?:—@( Z,t) Py, v P=+ ©(—i”,t)
(161)

where the quantity O on the right-hand side of each equation denotes the
quantity between P~ and P on the left.
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Time Reversal: T — —1

Schrodinger Picture:

() = e [9(0)) (162)

We seek a time-reversed state

b)) = T [w(-0) (163)

but we also insist that ’zz(t)> obey the Schrodinger equation:

@(0)> : (164)

H Bl Alan Guth
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$(6) =T [p(0), [5) = T|w(=)), [$(®)) = e~ |[§(0)) -

Furthermore, we insist in a time-reversal invariant theory that the same operator
T can reverse the evolution of any state. Then

T \w(—t)> — Tt

w<0>> : (165)

But we also know that

T |u(=t)) = |[9()) = =" |$(0)) oo
166
— it ‘¢(0)> .
Comparing the RHS's of (165) and (166),
T et = it (167)

HEE Alan Guth
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Expanding to first order:

Tt =T —  T(H)=(—iH)T . (168)

We know from Wigner's theorem that any symmetry operator (any mapping of
rays in a Hilbert space onto rays in the same Hilbert space which preserves overlap
probabilities) can always be represented as one of the following:

1)| a linear and unitary operator:

U (alhr) + Bla)) = aU |[¢p1) + BU [h2)

(169)
(Utho |Utp1) = (b2 |¢1) .
2) | an antilinear and antiunitary operator:
A(alyr) + B y2)) = o™ A1) + 57 Alep2) (170)
(Athg [Atp1) = (o [h1)" .
I I I i I- :-I:'A';,sll::y 8,‘;008: -Lect::e.rslides 6" _1 6_

Unitary or Antiunitary, That is the Question:

If T is unitary, T (iH) = (—iH)7T implies that T must anticommute
with H. But then 7 would map each positive energy state into a
corresponding negative energy state, violating the positivity of the energy.
If we don’t want a theory in which the eigenvalues of H are symmetric
about zero, we must choose 7 to be antiunitary.

P&S say: “The way out is to retain the unitarity condition 7" = 7", but have
act on c-numbers as well as operators.”

BUT: Antiunitary operators do NOT have adjoints, and 7~ operates on the
Hilbert space, not on c-numbers or operators. An adjoint is defined by

(O galn ) = (v2|Op1 ) -

If © were antiunitary, the left-hand side would be linear in |;) and the
right-hand side would be antilinear, so they could not possibly be equal.
Eq. (170) correctly defines the properties of antiunitary operators:

A(alr) + B ) = ™ A1) + B Alihe)
(A |Athy ) = (o |11 )" .

HEE Alan Guth
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7 and the Poincaré Algebra

The time reversal transformation on 4-vectors is given by

-1 0 0 0
0 1 0 0
7_0010 (171)
0 0 0 1

The matrix defines a linear transformation, however, so it is not really the
operator that we want to describe.

HEE Alan Guth
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The properties of 7', now used exclusively to refer to the operator in the Hilbert
space, are determined by

T @, 6) T = ¢(F, —t) (172)

where we note that antiunitary operators are invertible, but we should not
-1
assume that 7 = T .

Under rotations
U~ (R)¢(Z,t) U(R) = ¢(R™'Z, 1) ,

which can be combined with Eq. (172) to show that 7 commutes with
U(R(7,0)) = e

But since the exponent contains an i, 7 must anticommute with J. The
same is true for P, the generator of translations.

H Bl Alan Guth
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For boosts,
U™'(B) ¢(z) U(B) = (B~ ') ,
where ,
U(B(n,§)) = e ™5

To combine this with Eq. (172), we need to know what happens to B~z when
t is reversed. Defining T' to be the matrix that reverses the time component
of 4-vectors, one can show the 4-vector identity

which can be used with the above equations to show that T reverses the
direction of boosts, and hence 7 commutes with K (with the reversal

attributed to the i in e K ),

{

T,
(7.

Finally, then

<

f=0  |T.K|-=
}=0

HEE Alan Guth
I I ts i of T gy 2
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el

(173)

. 1
T Operating on Spin-5 States

Since 7 anticommutes with both .J, and P, it must reverse both the spin and the
momentum of the states on which it acts. So

T |p=0, s=+) = n; |p=0, s=—) (174)

For some phase 7, where |7;| = 1. Then

T |p=0,s=—) = T (J, —iJ,) |p=0, s=+)
= —(Jp +iJy) T |p=0, 5=
(Jo +1iJy) T |P s=+) (175)

= —n¢ [P=0, s=+)

H Bl Alan Guth
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Thus

2 . .
T |p=0,5=+) = T |p=0,s=—) = n; T |p=0, s=—) a6)
= —|m|? |[P=0, s=+) = — |[p=0, s=+) .

. 2 ; ;
Since T~ commutes with all the generators, this result holds for boosted states as
2 .
well. T~ = —1 on spin-3 states.

On a general state, |¢,s) = U(Bgz) [p=0, s), in the canonical representation,

T |§,s=+) = TU(Bg) [p=0, s=+)
= U(B_3) T |p=0, s=+)

) (177)
= U (B—-g) [P=0, s=—)
=Tt |_§7 SZ_) 0
I I I I I 8.323, May 8,‘;008: -Lect::eTslides 6" _22_
Similarly,
T ‘67 SI_) = =T ‘_67 S:+> . (178)

H Bl Alan Guth
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7T Operating on States (Cont.)

Summary of where we are:

T ‘67 8:+> =" |—67, 8:_>

_ ~ (179)
T|q,s=—) = —m|—q,s=+) .
These two equations can be combined by writing
T\, s) =inosy |—q,s'") , where ioc® = 1 0] ¢ (180)

where we adopt the convention that repeated indices (such as s’) are summed.

HEE Alan Guth
I I ts i of T gy 2
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7 and Creation/Annihilation Operators

Creation Operators Conjugated by 7: T _1aTs BT .

2 : . . : : :
We know that 7~ operating on single particle states is -1, so for single particle

—1 c
states T = —7 . The vacuum must transform under 7 into the vacuum (the
energy cannot change), and we can choose the phase to be 1. Then

1

V2E;
—i

2 = . 2
\/Entass’ |_p7 S/> = _Znto-ss’al’ (_

T al(3) T |0) = T 'al(5)]0) =
(181)

=1
SN—

=)
=

HEE Alan Guth
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Al (B) T |0) = —iqoZyal,(—5) |0) . (181)

If we assume that the particles in multiparticle states transform independently,

T|ﬁ181, .« 7ﬁNSN> = (i?]t)NO?lS/l ce O-gNS;V |—ﬁ8/1 ce ,—ﬁNS§V> y
(182)
then Eq. (181) can be promoted into an operator identity,
—1 4, . .
T al(3)T = —imoryal, (—P) , (183)

by the same methods that were used for Lorentz transformations in Eq. (59) (on
4/24/08).

HEE Alan Guth
I I ts i of T gy 2
8.323, May 8, 2008: Lecture Slides 6 — 6_

Annihilation Operators Conjugated by T: T 'as(B) T .

To find the action of 7 on annihilation operators, we want to calculate the adjoint
of Eq. (183). But we should be careful when we take the adjoint of an expression
involving antiunitary operators. In general, the adjoint of an operator O is defined
by the relation

(2 |0%1) = (OTa [9hr ) - (184)

Now suppose that L is an arbitrary linear operator and A is an arbitrary antilinear
operator. Then

<¢2 ‘A_lLA¢> = (Aapy |LAY)®
= (LT Ay | AY))” (185)
= <A_1LTA¢2 ‘1p> ,

HEE Alan Guth
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Therefore
(A~'LA) = a-'riaA, (186)
and then Eq. (183) implies that
(187)

-1 . .
T as(p)T = —in; U?S,asx(—p) :

(Note that i0? is real, so it is unchanged by taking the adjoint.)

Time Reversal 7 and Antiparticles:
All the same arguments apply to antiparticles, so one has the same equations,
except that the arbitrary phase need not be the same. So we introduce 7

(|7¢] = 1) for antiparticles:
TP T = —imo bl (=), T ba(B) T = —iff; 0% be (—P) -
(188)
IIIiI- :.I::::,;:aya,:ooa: Lect:rfeTSIide 6 _28_
‘ T and the Dirac Field I
=2 _ d3p 1 = =\ _—ip,zt T2 ,,8(2) oipuxt
wal@ 0 = [ 5 T B e 06 ) e )
Using Egs. (187) and (188),
1, _ d3p 1
TRENT = [ s o
20} (—B) v (B) e |

S { i o2 (<B) g () €7 — i b
S

Now define ; = (Z, —t), and replace the variable of integration g with —p.

of Te
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Now define Z; = (Z, —t), and replace the variable of integration § with —p. Then

3
T_1¢a(f,t)T:/dp L

S~ {into?a (B) ust () e — o b, () vt () e ]

(190)

To relate this expression to the original field 1, (x), we need identities for the u and
v functions (Egs. (80) and (87)):

we)= (VE28), ve= (YRI5 | ao

Vp-o&* —/p-o(—ic? £9)
where
1 _ 0
s=y)- =13 (192)
I I I I I 8.323, May 8, 2008: ecture sndee s’ -30-

Eq. (192) is equivalent to £ = 07, so we can write

- (58)-(1F30) | o
and then
(Pt = =i (BT ) ot =i ((ET00) | o

To continue the manipulations, we recall that we have for compactness defined
vV M, where M is a positive semidefinite matrix, by diagonalizing M and taking
the square root of the eigenvalues. This quantity is hard to manipulate, since one

*
can easily show by example that v/ M* is not necessarily equal to (vM) . So,
to continue in a straightforward way, we rewrite \/p- o and /p - & in terms of the
projection operators onto the p - & = +1 eigenspaces of p - :

H Bl Alan Guth
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[

[\ 3>
Q
—_
]
o
|
=
_|_
—
—_
|
[\ 3>
Qy
| I
]
o
_|_
=

(195)

13

1+p-& _ [1-$-& _
Z[T} p° + |P| {T} P’ —|p] .

If you look back to the derivation of Eq. (80), 5/1/08, you will see that \/p- 0o
and /p-c were introduced as abbreviations for the expressions on the RHS of
Eq. (195). Thus, using the identity 0™ = —020'0?, one has

. 1—p-G S N _
iy = {220 v+ 20 v o

= o2 D - o2 ,
(196)

and one can similarly show that
(Vp-o) =0 /p o0 . (197)
—32—

These relations — (\/p-0)* = 02\/p- 602 and (\/p-7)* = 02\/p- 00> — can be

used to simplify Eq. (194):

2 _ s [[(W)*oz]as/] _ [[UQ(W)UZ 02]%,]
[(vp~o) 0 [02(VP~5)0? 0%]as

(198)
In our conventions,
0 ot a2 0 . 1.3
©wo__ = —
7_[5_u 0] = [O 0_2]_ w s, (199)
SO
—iut* (B0 =~ (B) . (200)

HEE Alan Guth
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For the v-function, one has the same result:

and

then

.- Alan Guth

of T
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(201)

(202)

—34—

With Egs. (200) and (202), Eq. (190) becomes

—1 5 1.3 d3p 1
T Y@E,0)T =—'y /—<

27T)3 A /2Eﬁ :

S {ntau®) w (@) e + mbl(5) v (F) et )

S

(203)

Following our discussion of parity in Egs. (158) and (159), in a time-reversal-

invariant theory we must require that 7 (i, ¢)7 anticommute with ¥(z) at
spacelike separations, which in turn requires the ratio of coefficients of the creation
and annihilation pieces of Eq. (203) to be 1. So

and

.- Alan Guth

ey =1,

T (@, 0T = -y 2@, —t) .

of Te
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‘ Time Reversal and Dirac Field Bilinears I

Again it is fairly straightforward to calculate the effect of 7 on the Dirac bilinears,
so | will give only the results, in a format that matches the description of parity
transformations in Eq. (161):

T 9T =+0(z, —t) T iy T = -0(z, —t)
T 'yip T = —O0(F, —t) TPy T = -O(z, —1)
T 'y T = +0(z, —t) T‘I@M%%T = +0(z,-t)
T [1°, 7] v T = +0(z, —t) i [y, )T = -0z, -t

(206)
where the quantity O on the right-hand side of each equation denotes the quantity
-1
between 7~ and T on the left.

One can always choose 7, = 7y = 1, since the phase of an antilinear operator, such
as T, changes if one rotates that phases of all vectors in the Hilbert space.

I- Alan Guth
itute of T ay
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Charge Conjugation:
Particle <— Antiparticle

Having done the other cases, charge conjugation C is very straightforward.

C maps particle states into antiparticle states and vice versa, and it commutes
with all the generators of the Poincaré group. Labeling particle and antiparticle
states with subscripts a and b respectively,

Clp,s)y =nclp,s),

} ) (207)
C|p,s), =ncl|P,s), -

The corresponding relations for creation and annihilation operators are given by

C al() C =q5bl(B), € las(B)C = cbs(p) ,

e i L ) (208)
Cbl(P)C =nial(@), C bs(P)C =ncas(P) -

HEE Alan Guth
I I I itute of T gy _37_
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C and the Dirac Field:
Using again

we see that
_ d3p 1
C 1epu(z)C = /
'QD (33) (271-)3 /2E;3‘ =

(209)

Since this expression involves af(7) and bs(7), it will have to be compared with
YT (x) and not v (x). This means that we will need a relation between the u's and
the v's.

HEE Alan Guth
I I ts i of T gy
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Relation Between the u's and the v's:

- (E5)
(W)
( (VP 0)is
_ ’[UQ(W)UQ]M] (210)
{ [02(/P0)0%]as
=il (2 §) ()],
= —iv*v*(P)

The complex conjugate of this equation implies that

v (B) = —iv*u’(P) . (211)

H Bl Alan Guth
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C and the Dirac Field (cont):
Using Egs. (210) and (211), Eq. (209) becomes

C '(z)C = —i 2/ dp 1
- ] @n? 2R,
; (212)
[Z [REb(5) va(3) €7 + noa () ug (@) e }] |
Causality in this case requires that if C is a valid symmetry, then
nenc =1, (213)
and then
= . T . = T
C " Wu(z) C = —inc (Vi(2)7?), = —inc (P(z)7°?), , (214)

where the superscript T' denotes the transpose. Note that one can choose to
define C so that ng =nc = 1.
—40-

C and the Dirac Field Bilinears:

The charge conjugation of Dirac field bilinears introduces one new complication, so
we will work out one case in detail: C ~'47% C . To understand the physical
significance of this operator, note that

" =Pyt (215)

is a conserved current, since the Dirac equation in its original (Eq. (110)) and
adjoint (Eq. (122)) form implies that

P Buh = —imap, PP O, = ima .

Therefore

Oy (Br") = v (Fu +By) w =0 (216)

(It is worth noting that an analogous calculation shows that 9, (Y7"7°) =
2imapy>1p, so the axial vector current can be conserved only in the limit m —
0.) Since j*(x) is conserved, it is identified with the electromagnetic current,
up to a constant factor.
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To understand the normalization of j#(z), we can express the conserved charge as
an operator. Write 1,(Z,0) as

$ul#,0) = /dp WZ{% B) +bl(~F) 03 (~)} €7 |

and then
Q= [ 2jo@,0) = / Bayi(#,0) $(E, 0)
- [ / t——
2F = 2E~
xZ{a @ (P) + bs(—p) 0°(—p) } e~ 7%
x {a,(@)u" (@) + bl(—q)v"(—3)} 77 .
III 8:23 May 8, 2008 -Lecto:eTsl ides 6" _42_

Integration over Z gives a factor (27)38®) (5 — ), which can then be used to
integrate over ¢. Then one uses the relations

ul(B) vs(—P) =0 vl (B) us(—p) =0 (217)

to obtain

Q- /dfzz{a 5)+ b, () BL@)]} -

One sees that this contains an infinite vacuum contribution, since

> bs(B) bL(B) = 2(2m)* 6™ (0 Zb*ﬁ «(P) -
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Thus we can write

Q: :Q: +Qvac7 (218)
where
d3
= [ 555 S (a0 a) - HiF) .6)} (219
and
Qvac = 2/ (gjr]))g x Volume of space , (220)

analogous to Eq. (135) for the energy. Here | am using

1
= —— X Volume of space .

d3z - -
§®(0) = 6@ (7)) = /_ezpm
( ) ( )l 0 - (27T)3

p= (2%)3
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From Eq. (219) one can see that () counts each particle as one unit and each
antiparticle as minus one unit, so the electromagnetic charge is given by Qe,
where e is the charge of an electron (¢ < 0). Note that Qyac, as given by
Eq. (220), can be interpreted as the charge of the particles that are needed to
fill the Dirac sea, as described on slide 22 of the 5/9/06 lecture. Note that the
particles filling the Dirac sea have the same sign charge as the normal particles.
It is the holes that have the opposite charge.

Now that we understand ;j° and its integral @, we can apply C, using Eq. (214)
and its adjoint,

C~'9i(x) C = —ing (@), - (221)
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Then

CTMlaC = C 79I C C M C
= —int, ("), (~inc) (87
= — 2 9172 = Ya v}
= —¢f o +46@(0) .

(222)

The 6¢)(0) piece looks odd, but note that it would disappear if we defined normal
products which subtracted the divergent vacuum contributions at the start.
That is, Eq. (218) corresponds to an equation for densities

=l =yl +209(0), so 9Ty = pla - 26(0) .
Then, Eq. (222) can be rewritten as

C iy : C = C ' plepa C —26®)(0)
= — e +26®(0) (223)
= —:l: .

—46—

Thus, if C is applied to the bare charge density operator, 171, it changes the
sign of the vacuum contribution as well as the contribution of the physical
particles, and thus Eq. (222) contains a divergent term. However, if the
divergent vacuum contribution is removed by normal ordering, as in Eq. (223),
conjugation by C does not reintroduce any infinite quantities.

The fact that C will not reintroduce infinities is easy to understand from a different
point of view. If one looks back at Eq. (208), one sees that C interchanges
particles and antiparticles, but it does not interchange creation and annihilation
operators. Thus, if any expression is written in explicitly normal ordered form,
with all annihilation operators written to the right of all creation operators,
then conjugation with C will leave it in explicitly normal ordered form.
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Finally, | list a table showing the effect of charge conjugation on all the Dirac field
bilinears. We assume that all the operators have been normal-ordered, so that
infinite terms will not appear.

C 'y C =+0(a) C vy’ C = +0()

C 'y C = -0(a) C 'yiy’y C = +0(a)

C 'y C = -0O(x) C '97°y%y C = +0 ()
Clip[1°,4]vC =-0@) C'p[v',+]vC =-0()

(224)
where the quantity O on the right-hand side of each equation denotes the
quantity between C ~' and C on the left.
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‘ Consequences of Discrete Symmetries I

vt Cand P: For spin—% particles, the parity of antiparticles is opposite of the
parity of particles =  ground state of positronium has odd P; (C'is odd
for S = 1 positronium (interchanges 2 fermions in symmetric state), and even
for S = 0 positronium (odd wavefunction). Implies S = 0 can decay to two
photons, but not S = 1. (See Advanced Quantum Mechanics, by J.J. Sakurai,
Sec. 4-4.)

¢ T7 = 1 for states with odd numbers of spin-5 particles =  “Kramers
degeneracy”. Even if rotational symmetry is completely broken, say by a static
E field (‘T-preserving, unlike B), |¢)) and T |¢)) must be distinct states
with the same energy. (See The Quantum Theory of Fields, Vol. 1, by Steven
Weinberg, p. 81.)

J¢ CTP symmetry: implies that a thermal equibrium state always has baryon
number zero. Baryogenesis in early universe therefore requires a departure
from thermal equilibrium. (See The Early Universe, by Edward W. Kolb and
Michael S. Turner, Chapter 6.)
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