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8.513 Problem Set 6 

(Dated: November 9, 2004) 

Due Nov 23 

1. Consider an isotropic Hesenberg ferromagnet on a d­dimensional cubic lattice with the Hamiltonian 

H = −J Si.Sj (1) 
<ij> 

where J > 0. For simplicity just consider the case where �Si are spin­1/2 operators. 

Stot = i Si commutes with the Hamiltonian. (a) Show explicitly that the total spin operator � �

(b) Show explicitly that the state with all spins up is an exact ground state of the system? What is the ground 
state energy? 

(c) For a system with N sites how many other ground states are there? 
(d) Consider the ground state with all spins up. You will now construct excitations above this state. Consider 

the state obtianed by flipping a spin at site i in the ground state wavefunction. Find the action of the 
Hamiltonian on this state. Use the result to find eigenstates (and eigenvalues) that have exactly one spin 
flipped relatice to the ground state. Show that the excitation spectrum is gapless. How does the energy 
vary with wavevector at small wavevector? How many such gapless modes are there? Contrast this with 
the Heisenberg antiferromagnet. 

(e) What is the temperature dependence of the specific heat for a d = 3 Heisenberg ferromagnet at low T? 

2. Use the spin wave calculation for the Heisenberg antiferromagnet to discuss the stability of the classical Neel 
state to quantum/thermal fluctuations in d = 1, 2, 3 at both zero and non­zero temperatures. 
(Hint: Calculate the reduction in the Neel order parameter using the quadratic spin wave Hamiltonian. If the 
reduction is finite the Neel order is stable.) 

3. Consider a qantum antiferromagnet on a triangular lattice. 

(a) What is the classical ground state? What symmetries does it break? What is the order parameter manifold? 
(b) Upon including quantum fluctuations, will it support gapless spin wave modes? How many? 
(c) Optional: Determine the spin wave dispersion by direct calculation in a 1/S expansion. 
(d) Optional: Can you guess the structure of a non­linear sigma model field theory that is appropriate at 

least in ordered phases? 

4. Consider a particle moving on the surface of a unit sphere in three dimensions in the presence of a magnetic 
monopole at the center. This may be described by the Hamiltonian 

2H =
1 � (2)

2m
|Λ|

Λ = �n × (−i� A). The coordinate of the particle is � A is that apropriate for where � � + � n and the vector potential �

the monopole. The strength of the monopole ­ as determined by the total magnetic flux through the sphere ­ is 
fixed by the Dirac condition so that 

4πB = 2S (3) 

where 2S is an integer and B is the magnetic field due to the monopole at the surface of the sphere. 

(a) Show that �Λ satisfies the commutation relation 

[Λµ,Λν ] = i�µνλ(Λλ − Snλ) (4) 

Thus Λ does not satisfy angular momentum commutation relations and is not the generator of rotations 
on the sphere. 
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(b) Show that the correct angular momentum operators are instead 

� � nL = Λ + S� (5) 

Show explicitly that the � n and �L satisfy the expected commutation with � Λ. 

(c) The commutation algebra of the different components of �L requires that L2 has eigenvalues l(l +1) with 2l 
an integer. In addition Lz may be diagonalized simultaneously with L2 and (for any fixed l) has eigenvalues 
m in the range −l, −l + 1, ....., +l. Show that 

L2 = Λ2 + S2 (6) 

This implies the inequality l(l + 1) ≥ S2 so that the minimum possible value of l is S. 

(d) Armed with these results consider the spectrum of the Hamiltonian in Eqn. 2. What is the ground 
state energy? What is the angular momentum and degeneracy of the ground state? What is the angular 
momentum of the first excited state? What is the energy gap from the ground state? 

(e) Derive a path­integral that describes the motion of this particle (for instance the imaginary time path 
integral for the partition function).

(Hint: First construct the path integral assuming a general spherically symmetric potential in three di­

mensions, and at the end of the calculation specify that this potential constrains the motion to be on the

surface of a unit sphere).


(f) Show that the m → 0 limit reduces to the spin path integral derived in class. Consider this limit in the 
Hamiltonian framework. Show that both the ground state energy and the energy gap go to infinity in this 
limit. The divergence of the ground state energy has no physical consequence as we may redefine the zero 
of energy by adding a constant term to the Hamiltonian. The divergence of the energy gap means that the 
only states that survive in this limit are those in the ground state. This explains why the path integral 
reduces to the one for spin in the m 0 limit. → 


