8.514: Many-body phenomena in condensed matter and atomic physics Problem Set # 2 Due: 9/23/03

Squeezed states

1. Squeeze operators.
Consider a unitary operator U(f) = exp (¢ (aa —a*a™) /2).
a) Prove that

Ut (0)aU(#) = coshba — sinhfat, U (0)atU(0) = coshbat — sinhha (1)

(Hint: use the operator expansion theorem, Problem 1 a), PS#1). From that derive the transforma-
tion rule for the coordinate and momentum operators,

Ut@0)qu () =e’q, UT(O)PUY) ='p (2)

b) To show that the operator U(6), applied to the vacuum state |0), generates a squeezed state,
calculate the coordinate and momentum uncertainty, (d¢*), (0p®), and show that the uncertainty
product equals lh independent of 6.

¢) To characterlze the time evolution of the state 1), = U(6)|0), formally given by ¢ (t) = e~/

)
find the variance matrix (@ < (@5}
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time dependence. (Here the expectation values (...)y) = (¥(¢)|...|¢(t)), and {q,p}+ = @p + Dq.)

2. Time-dependent states of a harmonic osc1llat0r.
Consider a harmonic oscillator with a time-dependent frequency,

2 mw?(t
p_+ (t) -

H(D) = 2 (1)

2m

a) Suppose that w(t) is a given function of time. Look for a solution of the Schrédinger evolution
equation ihdyy = H(t)y of a gaussian form,

U(g,t) = A(t) exp(—a(t)q®/2) (5)

From the consistency requirement for such an ansatz, obtain a nonlinear differential equation that
relates the time-dependent a(t) with w(t).
b) Show that a squeezed state time evolution can be obtained from the condition

(P(t)g — Q()p) ¥(t) = 0 (6)

where P(t) and Q(t) are complex solutions of the classical Hamilton equations Q = P/m, P =
—mw?(Q).

The equations for P and @) are linear, while the equation for a(t) found in part a) is nonlinear.
To establish a connection between the two methods, find a substitution that turns the equation for
a(t) into a linear equation.

c¢) Consider a harmonic oscillator initially in the ground state. The parabolic potential is abruptly
removed at ¢ = 0, and then restored at ¢ = 7. Find the state at 0 <¢ < 7 and at t > 7.



d) A popular practical method of producing squeezed states involves parametric resonance which
takes place when the parameters of the oscillator are externally varied at a frequency close to twice
the unperturbed normal frequency,

wi(t) = wg + AcosQt, Q= 2wy (7)

Taking the oscillator initially in the ground state and assuming small A\, obtain the time dependence
of P(t), Q(t).

A note on weakly perturbed oscillator: At small A, it is convenient to look for a solution of the
equation @ + w?(t)Q = 0 in the form Q(t) = A(t) coswyt + B(t) sinwpt. For unperturbed harmonic
oscillator, at A = 0, the solution is given by constant A, B. Accordingly, for a weakly perturbed
oscillator, the leading time-dependence A(t), B(t) should be slow. Based on this intuition, derive
the differential equations for A(t), B(t) by discarding the rapidly oscillating terms (argue that their
effect is negligible).

To analyze wavepacket evolution, from the solution P(t), Q(t) find the parameter a(t). Qualita-
tively, sketch the width of the wavepacket as a function of time.

3. The phase-space density of a squeezed state.
a) Show that the Wigner function W (g, p) of a squeezed state is a gaussian distribution in the
phase space.

b) For a general gaussian distribution P(z) o exp (—% Hie1 Dij:rixj) of an n-component variable
x;, show that
Dyj= (M), My = (a;) (8)

In other words, the matrix D is fully characterized by the variance matrix M.

Consider the Wigner function W(q, p) of a squeezed state. Using the result of Problem 1, part
¢), find the time dependence M (t) and D(t).

c¢) For the states obtained in Problem 2, parts ¢) and d), reconstruct and qualitatively describe
the time evolution of the phase-space distribution W (g, p). You may find it useful to use numerics
for visualization.



