
4.4 Dynamics on Networks

So far, we simply identified the topology of connections between the nodes of a network.
In many cases the connectivity is merely the prelude to describing the different states of
the network that may arise from the coordinated evolution of its elements. Let us assign a
variable xi(t) to each node, whose time evolution is governed by

dxi

dt
= Fi(values of xj on sites connected to i) . (4.19)

We have assumed that the dynamics is governed by coupled first order differential equations
in time. This is a good approximation in many biological problems. For example, a network
of chemical reactions, or proteins and mRNA, could be described (in the mean-field limit)
by a set of rate equations for the concentrations Ci(t), such that

dCi

dt
= + Flux from chemical reactions creating i

− Flux from chemical reactions destroying i .

For example, in the simple reaction A+B k−⇌k+
C, the concentration of A varies as

d[A]

dt
= −k+[A][B] + k−[C] . (4.20)

What dynamic behaviors can be encoded in such systems of equations? We shall discuss
stationary fixed points and cycles as important examples.

4.4.1 Attractive fixed points

With only one variable, the generic outcome is for it to approach an attractive fixed point.
This is because the one dimensional equation can be regarded as describing descent in a
potential V (x), as

dx

dt
= F (x) = −∂V

∂x
, where V (x) = −

∫ x

dx′ F (x′) . (4.21)

The coordinate x will descend in this potential, settling down to possible fixed points that
are solutions to F (x∗) = 0. Note that a general function F (x) does not necessarily have a
zero. However, in most physically relevant situations the variable x is constrained to a finite
interval; for example, the concentration of a chemical has to be positive and less than some
maximal value. In such cases V (x) is effectively infinite outside the allowed interval, and the
potential will have a minimum, possibly at the limits of the interval. The function V (x) is
also relevant to the stochastic counterpart of Eq. (4.21): The addition of uncorrelated noise
η(t) to this equation (with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2Dδ(t − t′)) results in a Langévin
equation with steady steady probability density p∗(x) ∝ [−V (x)/D].
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The above conclusions hold for coupled equations with many variables, only if they
correspond to gradient descent in a multi-variable potential V (x1, x2, · · · , xN), i.e. for

dxi

dt
= −∂V(x1, x2, · · · , xN)

∂xi

≡ Fi . (4.22)

The equality of second derivatives then immediately implies that

∂Fi

∂xj
=

∂Fj

∂xi
. (4.23)

This condition is too constraining, for example in a linear system with Fi =
∑

j Wijxj it
requires symmetric interactions with Wij = Wji.

An interesting variant of gradient descent that avoids the constraint of symmetric inter-
actions is provided by Hopfield’s model of a neural network with graded response. In this
model the activity of each neuron is indicated by a variable xi (related to the spiking rate
of the neuron), and evolves in time according to

dxi

dt
= −xi

τ
+ f

(

∑

j

Wijxj + bi

)

. (4.24)

In Eq. (4.24), τ is a natural time constant for decay of activity in the absence of stimuli,
and for simplicity we set it to unity; bi represents external input to the network, say from
sensory cells; and Wij is a matrix encoding the strength of synaptic connections from neuron
j to neuron i. (The matrix does not have to be symmetric and in general Wij 6= Wji.) The
function f captures the input/output characteristics of the neuron’s response; it is assumed
to be a monotonic function of its argument, typically a sigmoidal form that switches between
a low and a high value at a threshold input (which can be folded into the parameter bi). A
simplified version of the neural network assigns discrete binary values (say -1 and +1) to each
neuron, and a randomly selected neuron i asynchronously switches depending on the sign of
∑

j Wijxj + bi. Hopfield in fact introduced the model with continuous variables {xi(t)} to

address criticism that the binary model was too removed from biological neurons.1

1J.J. Hopfiled, Proc. Nat. Acad. Sci. 81, 3088 (1984).
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For asymmetric connections,

∂Fi

∂xj
= −δij + f ′

(

∑

k

Wikxk + bi

)

Wij 6=
∂Fj

∂xi
= −δij + f ′

(

∑

k

Wjkxk + bj

)

Wji ,

and the Hopfield model does not correspond to gradient descent in a potential. Nonetheless,
we can still demonstrate the existence of fixed points by introducing a Lyapunov function,

L(x1, x2, · · · , xN) =

N
∑

i=1

[G(xi) − bixi] −
1

2

∑

i,j

Wijxixj , (4.25)

where the function G shall be defined shortly. The time derivative of L is given by

dL
dt

=
∑

i

∂L
∂xi

· dxi

dt

=
∑

i

[

G′(xi) − bi −
∑

j

Wijxj

]

·
[

−xi + f

(

bi +
∑

j

Wijxj

)]

.

With appropriately chosen G, we can show that L is always either decreasing or stationary.
To achieve this goal, let us set

G′(x) ≡ f−1(x) , (4.26)

where f−1(x) is the inverse function such that f−1[f(x)] = x. This definition implies that

dL
dt

=
∑

i

[αi − βi] · [−f(αi) + f(βi)] , (4.27)

where we have made the auxiliary definitions

αi ≡ G′(xi) = f−1(xi) , and βi ≡ bi +
∑

j

Wijxj . (4.28)

Note that since f(x) is monotonically increasing, the two factors in Eq. (4.27) always have
opposite signs, unless they happen to be zero, and thus

dL
dt

≤ 0 . (4.29)
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The proof of Eq. (4.29) is similar in spirit to that for the Boltzmann’s H-theorem in Statistical
Physics. A similar proof exists for the discrete (binary) version of the network.

The activities of neurons in the Hopfield network thus proceed to attractive fixed points
which are solutions to x∗

i = f(bi +
∑

j Wijx
∗
j ). The fixed points of the Hopfield model can

be interpreted as associative, or content addressable memories. The idea is to first imprint
a memory in the network by appropriate choice of the couplings Wij. For a particular
“memory” represented by {x∗

i }, the network is trained according to ∆Wij = ηx∗
i x

∗
j . The new

network will be described by a Lyaponov function, L + ∆L, with a deeper minimum at the
encoded memory as

∆L({x∗
i }) = −1

2

∑

i,j

∆Wijx
∗
i x

∗
j = −η

2

∑

i,j

(x∗
i x

∗
j )

2 < 0 . (4.30)

The imprinting procedure is a computational implementation of the so called Hebbian rule
according to which “neurons that fire together wire together.” If the thus trained network
is presented with a partial or corrupted version of the stored memory, it is likely to be in
the basin of the Lyapunov function that is attracted to the original memory. In principle
one can store many different memories in the network, each with its own separate basin of
attraction. Of course at some point the memories interfere, and the network has a finite
capacity dependent on the number of its nodes.

4.4.2 Stability, Bifurcation, and Cycles

Let us consider a bounded set of variables {xi} evolving in time as ẋi = Fi({xj}). Fixed
points are possible solutions to Fi({x∗

j}) = 0, but they will correspond to potential outcomes
(attractors) of the dynamics, only if all eigenvalues of the matrix

Mij =
∂Fi

∂xj

∣

∣

∣

∣

∗

, (4.31)

have negative real parts. (This is the condition for linear stability. For zero eigenvalues sta-
bility is determined by examining higher derivatives.) We are interested in physical problems
where the functions Fi, and hence all elements of the matrix Mij , are real. The eigenvalues
{λi} of a real-valued matrix are either real, or come in complex conjugate pairs u ± iv.

In the biological context, the functions Fi may determine the evolution of protein con-
centrations, and could then include parameters that depend on external stimuli. As such
parameters are changed, a fixed point (protein concentrations) may become unstable, caus-
ing the system to switch to another state. The initial fixed point becomes unstable at
the point where the real part of an eigenvalue changes sign from negative to positive. If
this happens for a real eigenvalue, we can focus on the dynamics along the corresponding
eigendirection– a one dimensional parametrization is then sufficient to capture the change in
behavior near such an instability. If the real part of a complex eigenvalue pair changes sign,
we need to analyze the behavior in the corresponding two dimensional surface spanned by
the eigenvectors.
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Let us first consider a single eigenvalue λ(ǫ) that changes sign as a control parameter
ǫ goes through zero. Indicating deviations along the corresponding eigendirection by y, at
linear level we have ẏ = ǫy. The fixed point at y∗ = 0 is stable for ǫ < 0, and unstable for
ǫ > 0. Higher order terms in the expansion in y are then necessary to determine the fate of
the fixed point. The simplest addition is a quadratic term, leading to

ẏ = ǫy − y2 . (4.32)

(The coefficient of the quadratic term can be set to 1 with proper scaling of y.) This model
then admits a stable fixed point at y∗ = ǫ for ǫ > 0. In this (transcritical) scenario, a stable
and an unstable fixed point collide and exchange stability.

The quadratic term in Eq. (4.34) is generically present, unless forbidden by a symmetry.
In particular, the symmetry y → −y is consistent only with odd powers of y in the equation
for ẏ, in which case Eq. (4.34) has to be replaced with

ẏ = ǫy − y3 . (4.33)

In such a pitchfork bifurcation a pair of stable fixed points appears at ±√
ǫ for ǫ > 0, and

the choice of one or the other is by spontaneous symmetry breaking.

The above changes in dynamic behavior as a parameter is varied are examples of bifur-
cations. If we do not insist upon starting with a stable fixed point as we have done so far,
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other forms of bifurcation is possible. For example, if the sign of the cubic term in Eq. (4.34)
is changed to positive, there is no longer a stable fixed point for ǫ < 0. The stable fixed
points now all appear for ǫ > 0, colliding at ǫ = 0, with a single unstable fixed point for
ǫ > 0. Yet another scenario by which a pair of stable fixed points disappear is provided by

ẏ = ǫ − y2 , (4.34)

where a pair of fixed points (one stable and one unstable) for ǫ > 0 collide and disappear for
ǫ < 0.

If the real part of a complex eigenvalue pair, λ± = u(ǫ) ± iv, changes sign, we can focus
on the two dimensional plane spanned by the corresponding eigenvectors. The trajectories
on this plane now transition from inward spirals to outward spirals.

Of course bounded variables cannot spiral out forever, and the by Poincáre–Bendixon
theorem states that the bounded spiral must approach a closed curve around which it cycles.
As an example, let us consider the pair of equations

ẋ = ǫx − ωy − (x2 + y2)x

ẏ = ωx + ǫy − (x2 + y2)y . (4.35)
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These equations where in fact constructed to have a simple form in polar coordinates (r, θ)
in terms of which x = r cos θ and y = r sin θ. It is then easily verified that Eqs. (4.35) are
equivalent to

θ̇ = ω

ṙ = ǫr − r3 . (4.36)

The trajectory now rotates at a uniform angular velocity ω, converging to the center for
ǫ ≤ 0, and to a circle of radius r∗ =

√
ǫ for ǫ > 0.

Note that a symmetric matrix Mij = Mji only has real eigenvalues. Complex eigenvalues,
and hence periodic cycles can only occur for antisymmetric matrices. In the above example,
the asymmetry is parametrized by ω which sets the angular velocity, but does not enter in the
equation for r. Indeed, it is easy to check that for a two by two matrix, complex eigenvalues
can only be obtained if the off-diagonal elements have opposite signs (as is the case in
Eq. (4.35)). Indeed, in the biological context, a simple scheme for generating oscillations
is to use an excitatory element (with positive interactions) in concert with an inhibitory
component. (with negative couplings). Other schemes, with three elements each inhibiting
the next in a cycle, as in the reprisselator2, also lead to oscillations by this mechanism.

2M. B. Elowitz and S. Leibler; Nature. 403, 335 (2000).
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