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Lecture 11 

Important equations for this lecture from the previous ones: 

1. The Virasoro constraints in the light-cone gauge, equation (32) and (33) in lecture 10: 

2v +∂τ X
− = (∂τ X

i)2 + (∂σX
i)2 , (1) 

v +∂σX
− = ∂τ X

i∂σX
i , (2) 

2.1.2: LIGHT-CONE QUANTIZATION (cont.) 

Since the general classical solution strings (for closed strings XR
µ and Xµ are independent periodic functions with L 

period 2π, while for open strings Xµ = Xµ): R L

µXµ(σ, τ) = x + vµτ + Xµ (τ − σ) + Xµ(τ + σ) . (3) R L

Then it can be rewritten in terms of Fourier expansion. For closed string:    α  
−in(τ−σ)Xµ(σ, τ) = Xµ + vµτ + i

1 
αµe −in(τ +σ) + α̃µe . (4) n n2 n

n =0 

It’s similar for open string, but from Xµ = Xµ one arrives at αµ = α̃µ:R L n n

√  1 −inτXµ(σ, τ ) = Xµ + vµτ + i 2α αµe cos nσ . (5) nn 
n =0 

(The physical meaning of αµ, α̃µ will be studied in Pset 3, so please do the homework.) n n 

The center off mass motion can be found by averaging the position of the strings at a given timeslice (l = 2π for 
closed strings and l = π for open strings): 

ˆ l1 µ µτdσXµ(σ, τ) = x + v . (6) 
l 0 

The constant vµ is identified with the strings’ center of mass velocity. 

The classical coefficients αµ and α̃µ keep track of the oscillation modes of the strings. While the closed strings n n 
have independent left-moving and right-moving contributions, open string can be described as standing waves so 
that left-moving and right-moving are the same. 
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In the light-cone gauge, X+ = v+τ and X− can be obtained by writing X− in Fourier expansion, plugging 
equations (4) and (5) into equations (1) and (2) then equating the coefficients of different Fourier modes. The 0th 
(non-oscillating) mode gives the relations between the strings’ center of mass velocity and the strings’ oscillation 
modes. For closed string, from equation (1): 

+ − 22v v = v + α αi αi + α̃i α̃i . (7) i −n n −n n 
n=0 

For open string, from equation (1): 
+ − 2 αi αi2v v = v + 2α . (8) i −n n 

n=0 

For closed string, from equation (2): 

αi αi = α̃i α̃i (9) −n n −n n 
n=0 n=0 

This is known as the level matching condition for closed strings. Equation (2) satisfies trivially for open strings. 

Poincare global symmetries of the action corresponds to the conserved currents on the worldsheet. For the 
moment, let’s look at translation and apply the standard Noether procedure: 

Πµ 
a = ∂∂aXµ LP

     1 
= 

2πα 
γab=ηab 

∂aX
µ . (10) 

Also note that ∂aΠµ = 0, from the equation of motion for Xµ.a 
Πµ is the momentum density along the string, and the corresponded conserved current is the string momentum in τ 
spacetime: ˆ l ˆ l µ1 l vµp = dσΠµ = dσ∂τ X

µ = . (11) τ 2πα 2π α 

The mass-squared is related to the spacetime momentum of the strings (the mass shell condition): 
0 0 

µ + 2M2 = −p pµ = 2p p − − pi . (12) 

For closed string, from equation (7): 

M2 =
1 

αi αi + α̃i α̃i =
2 

αi αi . (13) −n n −n n −n nα α 
n=0 n=0 

For open string, from equation (8): 
1 

M2 αi αi = −n n . (14) 
2α 

n=0 

One can concluded that the mass of a string can be determined from its oscillations. 

After understanding the strings at classical level, the next step is to quantization – quantize independent degrees 
of freedom Xi(σ, τ) (with canonical momentum density Πi) in the action: 

ˆ
S = − 

1 
d2σ∂aXi∂aX

i , Πi =
1 

∂τ X
i . (15) 

4πα 2πα 

Nominate Xi to be a quantum operator, with the canonical commutation relation at a given timeslice: 

[Xi(σ, τ), Xj (σ , τ)] = [Πi(σ, τ ), Πj (σ , τ )] = 0 , [Xi(σ, τ ), Πj (σ , τ )] = iδij δ(σ − σ ) . (16) 

i αiThe results are 0th mode x , pi and oscillation modes αi , ˜ all become operators: n n 

i[x , pj ] = iδij , [αi , αj ] = [α̃i , α̃j ] = nδij δn+m,0 . (17) n m n m
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Note that αi , α̃i can be related to the creation and annihilation operators (similar to canonical quantization of n n 
QFT, creation operators are associated with positive branch while annihilation operators are associated with 
negative branch so that the Hamiltonian is bounded from below): 

1 1 1 1i i i i√ αi = a , √ αi = (a )† , √ α̃i = ã , √ α̃i = (ã )† , n > 0 . (18) n n −n −n n n −n −nn n n n 

Therefore, the oscillator vacuum state (labelled by string spacetime momentum pµ) satisfies: 

αi |0, pµ) = α̃i |0, pµ) = 0 , n > 0 . (19) n n

Excited states can be built from creation operators (αi , α̃i with n > 0): −n −n 

µ)αi1 αi2 αi3 ...α̃j1 α̃j2 α̃j3 ...|0, p . (20) −n1 −n2 −n3 −m1 −m2 −m3 

For closed string, define the oscillation number operator (no summation in i index, and the order of operators is 
very important): 

1 1 
N i αi αi Ñ i αi αi = , = ˜ ˜ . (21) n −n n n −n n n n 

Hence the level matching condition can be rewritten as: 

nN i = nÑ i (22) n n 
n=0 n=0 

For open string, only one set of oscillation is needed (let’s pick αi ). −n

The quantum version of the mass shell condition for closed strings, from equation (13): 

D−1 D−1 

M2 =
2 

n(N i + Ñ i ) + a0 =
4 

nN i + ac . (23) n n nα α 
i=2 n=0 i=2 n=0 

The constant ac is the zero-point energy for closed string, comes from rearranging the operator to normal ordered 
(for αi and α̃i , negative n to the left and positive n to the right): n n

∞ 

α 

ac = 
2(D − 2) 

α 
n = ζ(−1) = −2(D − 2) D − 2 

α 6α 
. (24) 

n=1 

For open string, from equation (14): 

M2 = 
1 

D−1 

nN i + aon . (25) 
i=2 n=0 

The constant ao is found to be: 
∞

(D − 2) (D − 2) D − 2 
ao = n = ζ(−1) = − . (26) 

2α 2α 24α 
n=1 

The trick used here to find the zero-point energy is the ζ-function regularization: 
∞= 1 

ζ(s) = n −s , ζ(−1) = − . (27) 
12 

n=1 

The sum is only convergant for s > 1, but by using analytical continuation (around the pole at s = 1) one can get a well-define finite 
result for s = −1. In path integral approach, the zero-point energy can also be found (on the general worldsheet) after mapping an 
asymptotic state to a point insertion, and the consistency of the CFT requires − 1 (in that language, it’s the central charge). 

12 
Indeed, the divergent in equation (26) is just the artifact of a perturbative description (looking only at an asymptotic part instead of
 
the worldsheet as a whole), and the analytical continuation trick (which is arise a lot in quantum field theories and statistical field
 
theories) is used to read-off nonperturbative description from perturbative results.
 
For example of a fake divergent, consider a Taylor (perturbative) expansion of the following function:
 

∞=1 nf(x) = = x . (28) 
1 − x 

n=0 

f (x) is well-define everywhere except for x = 1 (pole). However, the Taylor expansion description gives a summation series with 
divergent (ill-defined) whenever |x| > 1, which is not the true property of f (x). 
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