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Important equations for this lecture from the previous ones: 

1.	 The spacetime metric from N D3-branes in IIB SUGRA , equation (13) and (14) in lecture 15:     
2ds2 = f(r) − dt2 + dxx + h(r) dr2 + r 2dΩ2 ;	 (1)e

1	 R4 4 
4 

f(r) = = H−1/2(r) , H(r) = 1 + , R4 = N GN T3 = N4πgsα
' (2)

h(r)	 r π2 

2.	 The relation between the gravitational constant GN and string theory’s gs and α', equation (15) in 
lecture 12: 

2α'2GN = 8π6 gs	 (3) 

2.2: D-BRANES AS SPACETIME GEOMETRY (cont.) 

From the spacetime metric given in equation (1) and (2), the physical interpretation of R can be seen: 

1.	 For r → ∞, f(r) = h(r) = 1, as the spacetime geometry is asymptotically flat. 

12.	 For r » R, then one arrives at the long-range Coulomb potential ∼ in D = 10 due to a 3D object:4r  	   R4 R4 

f(r) = 1 + O , h(r) = 1 + O (4) 
r4	 r4

3.	 For r ∼ R, the deformation of spacetime metric from D3-branes become significant, with the curvature 
∼ R−2 . In order for α'R−2 « 1 (so that SUGRA is valid), one need gsN » 1 and gs « 1. 

4.	 For r → 0 as one approaches the D3-branes, then H(r) ≈ R
4 
: r4 

2   R2r
ds2 = 

R2	
− dt2 + dxx2 + 

r2 
dr2 + R2dΩ2 (5)5 

The spacetime is now factorized into AdS5 × S5, with the S5 has a constant radius R. Another 
interesting feature of this metric is that r = 0 is now sits at an infinite proper distance away, as the 
branes seems to be essentially disappeared (no source) and there’re only the deformed geometry and 
F5 flux in spacetime. 

Now, we has 2 descriptions of N D-branes: 

1.	 Description A: D-branes in flat spacetime where open strings can end. 
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2.	 Description B: Deformed spacetime metric given in equation (4) with F5 fluxes on S5 where only 
closed strings can propagate. 

These 2 descriptions are expected to be equivalent. In priciple, both of them can be extended to be valid for all α ' 

and gs. This is a surprising statement, but no much can be done about it, since both sides are complicated and 
not very well known. In 1997, J. Maldacena considered a special limit of this equivalent, the low energy limit 
(fixed the energy scale E and take α ' → 0, or fixed α ' and take E → 0), and it is known nowadays as the 
AdS/CFT correspondence: 

1.	 Description A: Open strings give N = 4 SYM theory with the gauge group U (N) and the Yang-Mills 
2coupling g = 4πgs, closed strings give graviton and other massless fields, and note that the couplingYM 

between massless open and closed strings: 

2α '4GN ∼ g	 (6)s 

As E → 0, the N = 4 SYM decouples from gravitons and other closed string modes. Effectively, the 
theory is that of N = 4 SYM and free gravitons. 

2.	 Description B: From the spacetime metric of N D3-branes, one should be careful with which time to 
use and define the energy. The energy of D3-branes in description A is defined with t given in equation 
(1), which is the time at r = ∞. At a general value of r, the local proper time dτ = H−1/4(r)dt so 
then the local energy Eτ = H−1/4E. For r » R, H(r) ≈ 1 and E2α ' → 0, hence all massive string 
modes decouple. For r « R, H(r) ≈ R

4 
, and the low energy limit E2α ' → 0 means: r4 

2	 2r	 r
E2 α ' → 0 ⇒ E2 √ → 0	 (7)τ	 τR2	 4πgsN 

This means, for any Eτ , the low energy limit means r → 0. Which means, for sufficiently small r (close 
to the D3-branes), any massive stringy modes are allowed. The r → 0 region has AdS5 × S5 geometry 
with full stringy description, so the low energy limit is that of the free gravitons at r = ∞ and full 
string theory (with D-branes, which translational dynamics is actually playing an important role) in 
AdS5 × S5 – these 2 sectors decouple. 

Equating description A and B at low energy, one has N = 4 SYM theory with gauge group U(N) (characterized 
2by g and N) is equivalent to the full IIB superstring theory in AdS5 × S5 (characterized by gs and R

2

� ) withYM	 α
D-branes. With the help from equation (2), one gets the relations: 

R4 π4 
2 2 GN 

g = 4πgs , g = , =	 (8)YM YM N 
α '2 R8 2N2 

2.3: AdS/CFT DUALITY 

2.3.1: AdS SPACETIME 

From equation (5), the AdS spacetime metric: 

2	 R2r
ds2 = (−dt2 + dxx2) + dr2	 (9)

R2	 r2 

If xx is d-dimensional then this metric described AdSd+1 spacetime. R is the AdS curvature radius, and r runs 
from 0 to the boundary ∞. From the general relativity Einstein’s field equation point of view, AdS is a spacetime 
of constant curvature with negative cosmological constant: 

1 RMN − gMN (R− 2Λ) = 0 ; Λ < 0	 (10)
2 
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The solution of the given tensor equation: 

2(d + 1) 1 1 R = Λ , Λ = − d(d − 1) → R = −d(d + 1)R2 , RMNPQ = −R2(gMP gNQ − gMQgNP ) (11)
d − 1 2 R2 

R2 
Another convenient choice for coordinates in AdS space is z = , runs from the boundary 0 to ∞:2r

R2 

ds2 = 
z2 

− dt2 + dxx2 + dz2 (12) 

It should be noted that equation (9) and (12) only cover 1 part of the full AdS spacetime, called the Poincare 
patch. Indeed, to cover the whole AdS spacetime one needs an infinite number of copies of the Poincare patch. 
The global AdSd+1 spacetime can be described as a hyperboloid in a flat Lorentz spacetime of signature (2, d): 

X2 X2 = R2 = −dX2
0 + dXx 2 

−1 + X0
2 − x , ds2 

−1 − dX2 (13) 

Let’s look more closely to the geometrical structure of AdS space: 

1. The Poincare coordinates: 
Rµ Xµr = X−1 + Xd , x = (14) 
r 

Therefore, the coordinates described by equation (9) and (12) only corresponds to the r > 0 branch. 

2. The global coordinates:   
2X0 = R 1 + r2 cos τ , = R 1 + r2 sin τ , X0

2 + X2 = R2(1 + r 2) , Xx 2 = R2 r (15)X−1 −1 

Let τ runs from −∞ to +∞, then:   
dr2 

ds2 = R2 − (1 + r 2)dτ 2 + + r 2dΩ2 (16)
1 + r2 d−1

  
πFor r = tan ρ with ρ ∈ 0, 2 : 

R2 

ds2 = − dτ2 + dρ2 + sin2 ρdΩ2 (17) 
cos2 ρ d−1 

πThis choice of coordinates has the AdS center at ρ = 0 and the AdS boundary at ρ = , and the2 
geometry of the boundary is Sd−1 × R. 

The spacetime interval in the boundary can be calculated with: 

ds2 + dΩ2 (18)boundary ∼ −dτ 2 
d−1 

πIt takes a light ray τ = to reach the boundary, but a massive particle can never reach the boundary2 
since at some point it will turned back by gravitational pull. The AdS spacetime is like a confining box 
of size ∼ R. 
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