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1.2: BLACK HOLE THERMODYNAMICS 

1.2.1: IMPORTANT SCALES 

Planck scale 

We can construct physical units using fundamental constants l (reduced Planck constant), GN (gravitational 
constant), c (speed of light): 

mp = 
lc ≈ 1.2 × 1014GeV/c2 = 2.2 × 10−5 g;
GN 

lGN
lp = 

c3 
≈ 1.6 × 10−33 cm; 

lp
tp = ≈ 5.4 × 10−44 s 

c 

This quantity is called “Planck scale”, and represents the energy scale at which the quantum effects of gravity 
become strong. 

Strength of gravity 

Let us first compare the strength of gravity and strength of electro-magnetic (EM) interaction. In the EM case, 
2 e :interaction takes the form VEM = . We take the reduced Compton wavelength rc = to be the smallest distance r mc 

between particles, because this distance can be thought as the fundamental limitation on measuring the positions 
of a particle, taking quantum mechanics and special relativity into account. Using the unit of particle static mass, 
the EM interaction has the effective strength: 

2VEM (rC ) e 1 
λEM = = = α = 

mc2 lc 137 

On the other hand, we can also get the effective strength of gravity: 

2 2 l2VG(rc) GN m 1 m p
λG = = = = 

mc2 l/mc mc2 m2 r2 
p c 

Then λG « 1, for m « mp. For example, in the case of electron, me = 5 × 10−4GeV/c2, we have 

λG ∼ 10−43 

λEM 

The gravity effect is quite weak in this case. But if the mass is at Planck mass scale mp, then λG ∼ O(1), which 
means quantum gravity effects become significant (the corresponding length scale will be lp). 

Schwarzschild radius 

Now taking a step back from the quantum gravity effects, we can even ask a simpler question: for an object of mass 
m, at what distance rs from it, the classical gravity becomes strong? To answer this question, we can consider a 
probe mass m', then the classical gravity becomes strong means that 

GN mm'/rs GN m ∼ 1 ⇒ rs ∼'c2m c2 
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So now for an object of mass m, we have two important scales: 

l 
rc = : Reduced Compton wavelength 

mc 
2GN m 

rs = : Schwarzschild radius 
c2 

The pre-factor 2 of rs comes from a GR computation of a Schwarzschild black hole. 
2 rs mFrom ∼ 2 , we can conclude rc mp 

1.	 m » mp, rs » rc: classical gravity (quantum effects not important); 

2.	 m « mp, rs « rc: rs is not relevant, gravity effect is weak and not important; 

3.	 m ∼ mp, rc ∼ rs, quantum gravity effects are important. 

If this were the whole story, life would be much simpler, but much less interesting. However, black holes can make 
quantum gravity effects manifest at macroscopic level, at length scales of O(rs), we will discuss this later. 

Remark: lp can be thought as the minimal localization strength. In non-gravitational physics, the probing length 
scale l ∼ : , in principle, can be as small as one wants if one is powerful enough to get sufficiently large p. But p
 

∼ GN p
with gravity, when E ∼ p » mp, then rs c3 takes over as the minimal scale. Since rs ∝ p, so larger energies 
give larger length scales, lp is the minimal scale one can probe. Alternatively, consider uncertainty principle p 

: ∼ GN : 1	 :GNδp ∼ , then δx > GN δp , so we obtain δx > = lp.3 3	 3δx c c δx	 c

Now let us summarize various regimes of gravity for fixed energy scales we are interested in: 

•	 Classical gravity: l → 0, GN finite; 

•	 QFT in a fixed spacetime (including curved): l finite, GN → 0; 

•	 Quantum gravity: GN , l finite; and in the semi-classical regime for quantum gravity, we take l finite and 
expand the theory in GN . 

1.2.2 Classical black hole geometry 

Black hole geometry is the solution of Einstein equation with zero cosmology constant. The spacetime is due to 
an object of mass M. If we consider the object to be spherically symmetric, non-rotational, neutral, we have the 
Schwarzschild metric solution: 

1	 2GN M rs
ds2 = −fdt2 + dr2 + r 2(dθ2 + sin θ2dφ2), f = 1 − = 1 −	 (1) 

f r r 

Note that from now on, we have adapted the convention to take c = 1. 

The event horizon is defined at 
r = rs = 2GN M 

where gtt = 0, grr = ∞. When r goes across the event horizon, f changes sign, r and t switch role. 

Here are some simple facts on this metric: 

1. It is time-reversal invariant, i.e. invariant under t → −t.
 
It does not describe a black hole formed from gravitational collapse which is clearly not time-reversal
 
symmetric, but it is a mathematical idealization of such a black hole.
 

2. The spacetime is non-singluar at the horizon, as one can check this by computing curvature invariants.	 It is 
only a coordinate singularity (not an intrinsic singularity), where t (Schwarzschild time) and r coordinates 
become singular at the horizon. 

3. At r = rs, the surface is a null hypersurface. 
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4. The horizon is a surface of infinite redshift. 
Consider an observer Oh at the hypersurface r = rh ≈ rs and another observer O∞ at the hypersurface 
r = ∞. At r = ∞: ds2 → −dt2 + dr2 + r2dΩ2

2, t is the proper time for O∞. On the other hand, at r = rh: 
ds2 = −f(rh)dt

2 + · · · = −dτ 2 + · · · . We have dτh = f1/2(rh)dt, with τh to be the proper time for Oh. Then h 

dτh rs
= (1 − )

dt rh 

dτhAs rh → rs, 

1 
2 

→ 0, i.e. compared to the time at r = ∞, the time at r = rh becomes infinitely slow. dt 
Consider some event of energy Eh happening at r = rh, to O∞ this event has energy 

E∞ = Ehf 
1 
2 (rh) 

i.e. for fixed local proper energy Eh, E∞ → 0 as rh → rs, we call it infinitely redshifted. 

5. It takes a free-fall traveler a finite proper time to reach the horizon, but infinite Schwarzschild time. 

6. Once inside the horizon, a traveler cannot send signals to outside, nor can she/he escape. 

7. Two intrinsic geometric quantities of the horizon: 

•	 Area of a spatial section
 
A = 4πr2 = 16πG2
 

N M
2 

s 

•	 Surface gravity 
The acceleration of a stationary observer at the horizon as measured by an observer at infinity is given 
by 

K =
1 
f ' (rs) = 

1 
2 4GN M
 

More details can be found in Ref. [1]
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