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Note: parallel transport of such an “external quark” gives a slightly different object from that in an ordinary 
gauge theory, as it couples also to the scalar fields in N = 4 SYM. Geometrically, strings pull D-branes. One can 
show ˆ √dxµ 

n x2)W (C) = TrP exp i ds(Aµ + nn · Φ ˙ (1)
ds 

where nn is a unit vector on S5 and nΦ is six scalar fields of N = 4 SYM. 
Now consider this “quark” traverses some loop C on the boundary. Since (i) the quark is the end point of a 

string in AdS, C must be the boundary of a string worldsheet Σ, i.e. C = ∂Σ; (ii) the “partition function” for this 
quark system is (W (C)), we thus expect 

(W (C)) = Zstring [∂Σ = C] (2) 

which is the single string partition function whose worldsheet has boundary C. We know 

Zstring[∂Σ = C] = 
ˆ
∂Σ=C 

DXeiSstring (3) 

where Sstring = SNG or SP olyakov, i.e. 

SNG = − 
1 

2πα' 

ˆ 
d2σ
 
− det hαβ hαβ = gMN ∂αX

M ∂β X
N (4) 

Recall the Maldacena limit 

gs → 0 : neglect other topologies (no splitting and joining of strings) 

α' → 0 : can evaluate path integral by saddle-point approximation (no fluctuation) 

and this limit is equivalent to N → ∞ and λ → ∞. Under this limit, we should expect 

(W (C)) = Zstring[∂Σ = C] = e iScl[∂Σ=C] (5) 

where Scl is the action evaluated at a classical string solution. 
Let us see some examples. The simplest one is a static quark, which connects a single string stretching to the 

−iMTinterior of AdS. We know such an isolated Wilson loop evaluated as (W (C)) = e where M is the mass of the 
quark. On the bulk side, in Poincare patch, 

r2 R2 R2 

ds2 = (−dt2 + dnx 2) + dr2 (r = ) (6)
R2 r2 z 

using reparametrization freedom on the worldsheet, one can choose the coordinate on worldsheet as σα ≡ (τ, σ) = 
(t, r). One obvious solution is 

Xi(σ, τ ) = const (static string) (7) 

where the worldsheet metric becomes 

r2 R2 

ds2 = gMN ∂αX
M ∂β X

N dσαdσβ = − dt2 + dr2 (8)ws R2 r2 

Plug into the Nambu-Goto action, we get 
ˆ ˆ ˆ ∞√ 

SNG = − d2σ − det h = − dt dr = − T Λ (9) 
1 1 1 

2πα' 2πα' 
0 2πα' 

1 
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Λwhere Λ is the cutoff of r. This shows the mass of the quark should be M = as expected from D-brane 2παl 

calculation. The infinite mass refers to “external quark” by design. If we write the result in terms of z, introducing 
E = R2/Λ as the short-distance cutoff, one get 

√ 
R2 √ R2 

M = = ( λ = ) (10) 
1 λ 

2πα ' E 2πE α ' 

This corresponds to self energy in strong coupling of CFT on the boundary. Recall in QED Wilson loop calculation, 
Eself ∼ e2/E ∼ α/E, the dependence on the coupling constant is proportional to α not like here where it goes like 
α1/2 . 

The second example is the static potential between a quark and anti-quark. The Wilson loop is as follows 

−L/2 L/2

T

Figure 1: Square Wilson loop 

In this picture T » L. As explained before, this corresponds to a static pair of quark and anti-quark with 
−iEtotTdistance L. The total energy is Etot = 2M + V (L) and Wilson loop is evaluated as (W (C)) = e . We will 

see how gravity will help us to calculate the potential V (L) for N → ∞ and λ → ∞. 
Choose σα ≡ (τ, σ) = (t, z) for string coordinate. We would have the string hanging from two quarks on the 

boundary in AdS as shown below. 

−L/2 L/20

z

X1

Figure 2: String hanging in AdS 

Since T is very large, translation symmetry in time requires that X1 = X1(σ) and Xi = const. Alternatively, 
we can also choose the worldsheet parameter as σα ≡ (τ, σ) = (t, X1) and z = z(σ) is the position of the string with 
boundary condition z(±L/2) = 0. Then the worldsheet metric becomes 

R2 

ds2 
ws = 

z2 
(−dτ2 + (1 + z '2)dσ2) (11) 

' where z ≡ dz/dσ which implies the action to be 

R2 L 

dσ2 R2 L 

dσ2
ˆ ˆ

'2 '2SNG = − = −T 1 + z T 1 + z (12) 
2πα ' πα ' z2 z2 

2− L 

where in the last step we used the reflection symmetry z(σ) = z(−σ). Now we need to extremize it to find z(σ). 
One expect the integral to be divergent near z = 0 as SNG contains contribution 2MT but we can cut off at z = E. 
With the self energy obtain above, we get the potential to be 

√ L √ √  L 
 

0 

ˆ
J

2
ˆ
J

2λ dσ λ λ dσ 1'2 − 2 '2 −V (L) = 1 + z 1 + z (13) = 
z2 z2π 2πE π E

2 

√ √

√ √
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√ 
1 '2We define L as 1 + z . Since L does not depend on σ explicitly, the Hamiltonian (canonical momentum with 2z

respect to σ) is a constant, 

z ' Πz − L = const Πz = 
∂L 

(14) 
∂z ' 

which can be solved out to be 
1 √ = const (15) 

z2 1 + z '2 

From reflection symmetry, at σ = 0, z ' (0) = 0 and z(0) = z0, we know the constant is exactly 1/z0
2 . Hence we get 

4 4z0 − z
z '2 = 

z4 
(16) 

which can be easily integrated to get z. Note z0 can be fixed by requiring z(L/2) = 0 as 

√ 
π Γ(1/4) 

z0 = L 
2 Γ(3/4) 

(17) 

Plug (16) into (13), we have 

√ √ √ 
z0	 

ˆ 1 ˆ ∞dz 1 λ dy dy λ 4π2ˆ
λ 2 z0 − − = −V (L) = (18) = 

y2 Γ4(1/4)π 4 E πz0 Lz2 − z4 1 − y2 '
z

−12. L dependence same as coulomb potential is from scale invariance. 

'
z0 0 

Remarks 

1.	 This potential is finite and negative, which means the interaction is attractive. 

√ 
3.	 λ dependence on coupling constant is the result of strong coupling predicted from gravity. In weak 

coupling case, V ∝ − λ .L 

4.	 z0 ∝ L shows the IR/UV connection since larger z0 corresponds to lower energy binding of the quark 
pair on the boundary. 

3.2: GENERALIZATIONS 

3.2.1: FINITE TEMPERATURE 

So far we have following duality 

string in AdS5 × S5 ⇐⇒ N = 4 SYM 

normalizable solution ⇐⇒ state 

pure AdS5 × S5 ⇐⇒ vacuum 

A natural question raises: what does the thermal state in SYM correspond to? The gravity description should 
satisfy: 

1. It is asymptotic AdS5 (normalizable) 

2. It has a finite temperature T and satisfies all laws of thermodynamics 

3. For Poincare patch, translationally invariant and rotationally invariant along boundary directions. 

Regarding these conditions, here are two candidates: 

1. Thermal gas in AdS 

2. Black hole. 

z yJ 0 

3 

( √ ) ( √ )
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The thermal gas lives in AdS can be described by Euclidean AdS metric 

2)ds2 = 
R

z2

2 

(dτ 2 + dz2 + dnx (19) 

with periodicity τ ∼ τ + β. Furthermore, for fermions we should require the partition function to be anti-periodic 
in τ . But this solution has two disadvantages, the first is that there is a curvature singularity at z → ∞; the second 
is that strings winding around τ direction develop techyons, which will be unstable. 

For black hole, we need to find a solution with an event horizon which is topologically Rd−1 . Taking the ansatz 

R2 R2 

ds2 = (−f(z)dt2 + dnx 2) + g(z)dz2 (20) 
z2 z2 

we can solve Einstein equations to get 
dz

f(z) = 1/g(z) = 1 − (21) 
dz0 

where z0 is a constant, which characterize the position of horizon. Using the standard trick going to Euclidean 
signature, one finds 

1 4π d 
β = = z0 =⇒ T = (22) 

T d 4πz0 

This is the temperature measured in boundary, and z0 ∝ T −1 shows again the IR/UV connection. Now we 
can obtain thermodynamical behavior of strongly coupled N = 4 SYM (N → ∞ and λ → ∞) from black hole 
thermodynamics (d = 4). The entropy of black hole is 

ˆ
R3A3

SBH = A3 = 3 dx1dx2dx3 (23) 
4G5 z0 

We can define the entropy density as 

ˆ 
R3 1 π2 G5 π 

s = S/ dx1dx2dx3 = = N2T 3 ( = ) (24) 3z 4G5 2 R3 2N2 
0 

which is proportional to N2 as expected from CFT entropy. One can also obtain the energy density and pressure 
from (Tµν ), which can be calculated from the counterpart of O in scalar story, i.e. 

1 (Tµν ) ∝ ∼ T 4 (25) 4z0 

as expected for a CFT in d = 4. But getting the precise numerical factors takes some efforts. It is easier to use 
thermodynamics: 

∂f π2 

s = − =⇒ f = − N2T 4 (26) 
∂T 8 

3π2 

=⇒ e = f + Ts = N2T 4 (27) 
8 

where f is free energy density and e is energy density. Note these classical gravity results are only valid at λ → ∞. 
Now we can compare with free theory results: 

7 2π2 2 
sλ=0 = (8 + 8 × ) × T 3(N2 − 1) = π2N2T 3 (N → 0) (28) 

8 45 3 

where the first 8 is for 8 bosons and the second is for 8 fermions in N = 4 SYM. We find the ratio is crucial 

sλ=∞ 3 
= (29) 

4sλ=0 

since many examples of CFT duals are known in d = 4 which have 

sstrong 3 
= h (30) 

sfree 4 

4 
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where for many theories 8 ≤ h ≤ 1.09.9 
In the pset you will study the behavior of Wilson loop at a finite T . The physical expectation is: when L is 

sufficiently large V (L) → 0. This is called “color screening” in QCD. The gravity dual is shown in the following 
picture, where in small L it is similar as zero temperature but in large L the string connecting two quarks becomes 
alike two very straight strings hanging from two quarks respectively that looks like two free static quarks. 

−L/2 L/20

z0

small L

−L/2 L/20

z0

large L

Figure 3: String hanging in AdS black hole 
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