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Reminder from last lecture

In general geometry, we can identify temperature in this way: we first analytically continue time to imaginary time
t→ −iτ , and then from regularity argument find the period of the imaginary time β, which can be interpreted as
the inverse of temperature.

In the Schwarzschild black hole case

ds2 = −fdt2 1
+ dr2 + r2dΩ2

f

After transforming to the imaginary time, the near horizon geometry becomes R2 × S2 (Fig. 1). In order for the
metric to be regular at the horizon, τ has to be periodic

2π
τ ∼ τ +

K

which gives the temperature of the black hole:

~K
T =

2π
=

~
8πGNm

Figure 1: Schwarzschild black hole near horizon geometry in Minkowski (left) and Euclidean (right) signature.

Another example is the 2d Rindler coordinates

ds2 = −ρ2dη2 + dρ2

After making the transformation η → −iθ, the space becomes 2d Eucilean space in polar coordinates (Fig. 2). To
avoid a conical singularity at the origin, we must have

θ ∼ θ + 2π

which gives the local temperature

TRindler
~

loc (ρ) =
2πρ

=
~a
2π
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Figure 2: Rindler spacetime in Minkowski (left) and Euclidean (right) signature.

Physical interpretation of the temperature

Consider a QFT in a black hole spacetime. The “vacuum” state obtained via this analytic continuation procedure
from the Euclidean signature is a thermal equilibrium state with the stated temperature.

Remarks:

1. The choice of vacuum for a QFT in a curved spacetime is not unique. The procedure we described
corresponds to a particular choice. In the Schwarzschild black hole case, it is the “Hartle-Hawking vacuum”;
while in the Rindler case, it is the Minkowski vacuum reduced to the Rindler patch (reduced density matrix
of the Minkowski vacuum).

2. If for a black hole, in Euclidean signature we take τ to be uncompact, then it is the Schwarzschild vacuum
(Boulware vacuum). This is the vacuum that one would get by doing canonical quantization in terms of the
Schwarzschild time t. In the Rindler case, if we take θ to be uncompact, we have Rindler vacuum, which can
be obtained by doing canonical quantization in Rindler patch in terms of η.

3. In the Schwarzschild vacuum, since the correspoding Euclidean manifold is singular at the horizon, physical
observables are often singular there, e.g. stress tensor blows up there. But in Lorentz signature, this is not
the case. For the “Hartle-Hawking” vacuum, for which all physical observables are warranted to be regular at
the horizon. Similar remarks apply to the Rindler and Minkowski vacuum for Rindler spacetime.

Physical origin of the temperature

We will now use the example of Rindler spacetime to:

1. show that θ ∼ θ + 2π corresponds to the choice of Minkowski vacuum.

2. illuminate the physical origin of the derived temperature, similarly for the black hole case.

In other words, we will show: the vacuum in the Minkowski spacetime appears to be a thermal state with the
temperature:

~a
T =

2π

to a Rindler observer of a constant acceleration a.

Preparations:

1. We now give two descriptions of a thermal state, using a harmonic oscillator as an example.

• In a thermal state, the thermal expectation of a physical observable can be evaluated as

1〈X〉T = Tr (Xe−βH) = Tr (XρT )
Z

where the thermal density matrix reads

1
ρT = e

Z

∑
−βEn

n

|n〉〈n|

here |n〉 represents the n-th excited state, and the partition function is Z =
∑
n e
−βEn .
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• In 1960’s, H. Umezawa constructed a quantum field theory at finite temperature. Let us follow his idea:
we consider two copies of the same system:

H1 ⊗H2

where H1 and H2 correspond to Hilbert space of H1 and H2. Hence typical states in such a system can
be written as ∑

amn
m,n

|m〉1 ⊗ |n〉2

If we we consider a special entangled state:

1|Ψ〉 = √
β

e
Z

∑
−

n

En2 |n〉1 ⊗ |n〉2

Then the reduced density matrix for subsystem H1 is

1
Tr2(|Ψ〉〈Ψ|) = e−βT |n〉11〈n

Z
|

This exactly the thermal density matrix ρ

∑
T in system 1, and any physical observable X(1) which acts

only on H1 has the expectation value

1〈Ψ|X(1)|Ψ〉 = e
Z

∑
−βEn

n

〈n|X|n〉 = 〈X〉T

Here the temperature arises due to ignorance of system 2.

We have some additional remarks:

• This framework applies to any quantum systems

• The state |Ψ〉 is invariant under H1 −H2, i.e. eit(H1−H2)|Ψ〉 = |Ψ〉.
• We can also express |Ψ〉 as

1|Ψ〉 = √
Z
e−

ωβ a†2 1a
†
2 |0〉1 ⊗ |0〉2

where a1 and a2 correspond to the annihilation operator in H1 and H2.

• One can show that
b1|Φ〉 = b2|Ψ〉 = 0

where

1
b1 = cosh θa1 − sinh θa†2 cosh θ = √

1− e−βω

e−
1

b1 = cosh θa2 − sinh θa†1 sinh θ =
2βω

√
1− e−βω

The above transformation is known as the Bogoliubov transformation. So we have |Ψ〉 as the “vacuum”
for oscillators b1, b2; just like |0〉1 ⊗ |0〉2 is the “vacuum” for a1, a2.

2. The Schrodinger representation of QFTs

Consider a scalar field φ(~x), the Hilbert space is all possible field configurations H = {Ψ [φ(~x)]}, and the
transition amplitude from field configuration φ1 at time t1 to the field configuration φ2 at t2 can be written
as

φ(t2,~x)=φ2(~x)

〈φ2(~x), t2|φ1(~x, t1)〉 =

ˆ
Dφ(~x, t)eiS[φ]

φ(t1,~x)=φ1(~x)

And the vacuum wave functional can be obtained by

φ(tE=0,~x)=φ(~x)

〈φ(~x)|0〉 = Ψ0 [φ(~x)] =

ˆ
Dφ(~x, t)e−SE [φ]

tE<0
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Now we come back to a QFT, say a scalar theory, in Rindler spacetime:

ds2 = −dT 2 + dX2 = −ρ2dη2 + dρ2

Going to Euclidean signature: T → −iTE , η → −iθ

ds2E = dT 2
E + dX2 = ρ2dθ2 + dρ2

With θ ∼ θ + 2π, Euclidean analytical continuation of Minkowski and Rindler spacetime coincide. So Euclidean
observables are identical in the two theories. On the other hand, when analytically continued back to Lorentzian
signature, for Minkowski spacetime, Euclidean correlation functions becomes correlation functions in the
Minkowski vacuum; For Rindler spacetime, we will only have correlation functions in the Minkowski vacuum for
operators restricted to the Rindler patch. i.e.

HRindler = Ψ [φR(X)] |φR = φ(X > 0, T )

here we have Rindler Hamiltonian HR with resp

{
ect to η, and |n〉R denotes a c

}
omplete set of eigenstates for HR

with En, |0〉R is the Rindler vacuum.

For the Minkowski spacetime

HMink =
{

Ψ [φ(X)] |φ = (φ (X), φ (X) = HRindler ⊗HRindlerL R L R

here we have the Minkowski Hamiltonian HM with respect to T.

}
Here we denotes the Minkowski vacuum as |0〉M .

The Minkowski vacuum wave functional

ˆ φ(TE=0,X)=φ(X) φ(θ=0,ρ)=φR(X)

Ψ0 [φ(X)] = Ψ [φ (X), φ (X)] = Dφ(X,T )e−SE [φ]
0 L R =

ˆ
Dφ(θ, ρ)e−SE [φ]

LHP φ(θ=−π,ρ)=φL(X)

The above expression can also be reduced in the Rindler notation (Fig. 3)

Ψ [φ(X)] = 〈φ |e−i(−iπ)HR0 R |φL〉 =
∑

e−πEnχn [φR]χ∗n [φL]
n

Figure 3: Minkowski vacuum wave functional expressed in the Euclidean Rindler coordinates.

where χn [φ] = 〈φ|n〉. Here χ∗n [φL] can also be thought as χ̃n [φL] ∈ H , and
R̃ind

H is Hilbert space with
R̃ind

respect to an opposite time direction to the original Rindler space we start with (Fig. 4). Thus we have

|0〉 πEn
M ∝

∑
e−

n

|n〉Rind ⊗ |n〉R̃ind
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Then trace over the opposite time direction Rindler space, we have the reduced density matrix for the normal
Rindler space

Tr ( 0 0 ) = ρ
R̃ Mind

| 〉 M 〈 | Rind

And this density matrix itself can also be viewed as a thermal density matrix ρTRind = 1 eZRind
−2πHR with the

inverse temperature β = 2π.

Figure 4: Minkowski Hilbert space as the direct product of left Rindler Hilbert space and right Rindler Hibert space
(but with opposite time direction).
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