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Reminder from last lecture

The vacuum of Minkowski space can be viewed as an entangled state of left Rindler patch and right Rindler patch

|0〉M ∝
∑

e−πEn |n〉Rind R
n

⊗ |n〉
ĩnd

with |n〉R and En the energy eigenvectors and eigenvalues of HR in the right patch; |n〉L the eigenvectors for the
left patch (with opposite time direction).

Then after tracing over the opposite time direction Rindler space, we obtain the reduced density matrix for the
normal Rindler space

Tr (
R̃ind

|0〉MM 〈0|) = ρRind

And this density matrix itself can also be viewed as a thermal density matrix ρTRind = 1 eZRind

−2πHR with the
inverse temperature β = 2π.

Figure 1: Minkowski Hilbert space as the direct product of left Rindler Hilbert space and right Rindler Hibert space
(but with opposite time direction).

The nature of a Rindler observer in the Minkowski vacuum can now be understood

1. |0〉M is an (specific) entangled state between left and right patches.

2. Tracing out the left patch leaves a thermal density matrix for the right patch.

Further remarks:
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(R) (L)
1. |0〉M is invariant under HRind −HRind (here we have a minus sign, because the time flows oppositely in the

left patch).
(R)

eiη(HRind−
(L)

H )Rind |0〉M = |0〉M
This can also be seen geometrically: η translation is a boost in (X,T ), i.e. HRind generates a boost. |0〉M is
clearly invariant under a boost. Yet boosts act oppositely in the right and left quadrants as indicated in
Fig. 1.

2. If we expand φR (φL) in terms of modes in the right (left) quadrant:

φ R R† R
R =

∑
(aj uj + aj u∗j ), aj

j

|0〉R = 0

then
1|0〉M = √ R

Z

∏
exp j

Rind j

[
−πω a

†
j aL

†
j

]
|0〉R ⊗ |0〉L

And the usual Minkowski creation and annihilation operators are related to aRj , aLj by the Bogoliubov
transformations just as the earlier harmonic oscillator example.

3. All the discussions can be generalized immediately to the Schwarzschild spacetime (Fig. 2).

|0〉HH = path integral over the lower half plane of the Euclidean continuation of black hole spacetime

where |0〉HH refers to the “Hartle-Hawking vacuum”.

4. As shown in Fig. 2 black holes formed by the gravitational collapse only have R and F region. Our
discussion does not directly apply. Nevertheless, all the conclusion apply, including TBH , SBK , etc.

Figure 2: Hartle-Hawking vacuum (left) can be expressed as an path integral over the lower half plane of the
Euclidean contention of the black hole spacetime (right).

1.2.4: BLACK HOLE THERMODYNAMICS

From the previous discussion, we know that a black hole has a temperature:

~
TBH =

8πGNm

Thus a black hole is a thermodynamic object, and it must obey thermodynamics. Now recall thermodynamic
relations:

dS

dE
=

1 8πGNm
=

T (E) ~
since for a black hole E = m

S(E) =

ˆ
dE

T (E)
=

4πGNE
2 4πr2

+ const = s

~
AH

=
4~GN e~GN
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The integral constant can be determined to be 0 since S(E) = 0 for E = 0, AH is the area of black hole horizon.
So we now have the most important conclusion for black hole

~K
TBH =

2π
, SBH =

AH
(1)

4~GN
Note that TBH decreases as mass m increases, the system has a negative specific heat:

∂S
C = T

∂T
=
∂E

< 0
∂T

The relation Eq. 1 is in fact universal, applying to all black holes in Einstein gravity with matter fields (including
those from string theory).

General black holes

In this section, we list the mostly quoted results about general back holes.

No hair theorem: a stationary, asymptotically flat black hole is characterized by its

1. mass M

2. angular momentum J

3. conserved gauged charges (e.g. electric charge Q).

This means after the process: star→ black hole, all features of the stars have lost (classically).

Now we summarize four laws of black hole mechanics:

• 0th law: surface gravity K is constant over the horizon.

• 1st law:
K

dM = dA+ ΩdJ + ΦdQ
8πGN

where Ω is the angular frequency at the horizon, Φ is the electric potential at the horizon (assume that at ∞
the potential is 0).

• 2nd law: horizon area never decreases classically.

• 3rd law: surface gravity of a black hole cannot be reduced to 0 in a finite number of steps.

These laws become the standard laws of thermodynamics with the identification Eq. 1. In particular the 1st law
becomes

dE = TdS + ΩdJ + ΦdQ

Historically, before Hawking’s discovery of black hole radiation, Bekenstein (1972-1974) has found SBH ∝ AH , the
motivation is to save the 2nd law of thermodynamics for a system with black holes. if an ordinary system falls
into a black hole, the ordinary entropy becomes invisible to an exterior observer, therefore we have the generalized
2nd law (GSL):

dStot > 0, Stot = SBH + Smatter

If we accept a black hole as a thermal object, GSL is of course automatic.

Finally, we give some puzzles/paradoxes

1. Does black hole entropy has a statistical interpretation?

2. Does black hole respect quantum mechanics?

The first question has been answered in the affirmative for many different types of black holes in string theory and
holographic duality. That is a black hole has internal states of order:

A

N ∼
H

e 4~GN

The second question is related to Hawking’s information loss paradox. The rough description of this paradox is:
consider a star in a pure state collapse to form a black hole, which then radiates thermally. If to a good
approximation, the radiation is thermal for m� mp, so before m ∼ O(mp), very little information about the
original state can come out. Once m ∼ O(mp), it will be too late for all the information to go out. Then we start
from a pure state and eventually get into a thermal state with density matrix description, i.e. information is lost!
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