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1.3: HOLOGRAPHIC PRINCIPLE

If we do treat black hole as an “ordinary” QM object, an important implication would be the holographic principle.

Consider an isolated system mass E and entropy S0 in an asymptotic flat spacetime. Let A be the area of the
smallest sphere hat encompasses the system, and MA to be the mass of a black hole with the same horizon area,
we must have E < MA, otherwise the system would be already a black hole.

Now add MA − E energy to the system (keeping A fixed), we shall obtain a black hole with mass MA, since

SBH > S0 + S′

where S′ is the entropy of added energy, we conclude that

A
S0 6 SBH =

4~GN
i.e. the maximal entropy inside a region bounded by area A is

A
Smax =

4~GN

Recall the definition of entropy in quantum statistical physics:

S = −Tr ρ log ρ

where ρ is the density matrix for the state of a system. For a system with N-dimensional Hilbert space

Smax = logN

Hence the “effective” dimension of the Hilbert space for a system inside a region of area A is bounded by

A
logN 6

4~GN
=

A

4l2p

Remarks:

1. For a system of n spins, the Hilbert space dimension N = 2n.

2. The dimension of H for a single harmonic oscillator is infinite. But for a quantum system with finite number
of degrees of freedom (d. o. f.), the dimension of H below some finite energy scale is always finite, that’s
why we have “effective” in the above description.

3. In typical physical systems,
number of d. o. f. ∼ logN

thus we can write
A

number of d. o. f. of any quantum gravity system 6
4l2p

4. The bound is violated in non-gravitational systems whose number of d. o. f. (or logN) is proportional to
the volume rather than area of the system. e.g. for a lattice of spins with lattice spacing a, total number of
spins is V

a3 = A
a2

L
a �

A
l2p

for large enough L. Also N = 2V/a
3

, we have Smax = V fa3 log 2 > SBH or large

enough volume. In other words, quantum gravity leads to a huge reduction of d. o. f.

Holographic principle: In quantum gravity, a regime of boundary area A can be fully described by no more than
A

4~GN
= A

2 degrees of freedom, i.e. degree of freedom per Planck area. Black hole brings quantum gravity to a4lp

macroscopic level.

1



Lecture 6 8.821/8.871 Holographic duality Fall 2014

1.3: LARGE N EXPANSION OF GAUGE THEORIES

We now look at clues to holographic duality from field theory side.

Consider QCD which can be described as SU(3) gauge theory with fundamental quarks. The Lagrangian reads

1L =
g2YM

[
−1

4
TrFµνF

µν − iΨ(D/ −m)Ψ

]
where D = ∂ − iA , A are 3× 3 Hermitian matrices and can be expressed as A = AaT a, with T aµ mu µ mu µ µ ∈ SU(3).
In such a theory, coupling becomes strong in IR (ΛQCD ∼ 250 MeV), there is no small parameter to expand. It is
still an open problem to derive IR properties of QCD from the first principle.

t’ Hooft in 1974 suggested take number of color N = 3 as a parameter, i.e. promote Aµ to N
1

×N hermitian
matrices and consider N →∞ limit and do a expansion. It is an ingenious idea, unfortunately, QCD stillN
cannot be solved to leading order in the large N limit. Surprisingly, there is an correspondence between the large
N gauge theory and the string theory. The key is the fields are matrices. As an illustration, we will consider a
scalar theory:

1L = −
g2

Tr

[
1

2
∂µΦ∂µΦ +

1
Φ4

4

]
where g is the cooling constant, Φ(x) = Φab (x) is a N ×N hermitian matrix, i.e. Φa ∗ = Φbb a. In terms of
components

1L = −
g2

[
1

2
(∂µΦab )(∂µΦba) +

1
Φa c
bΦbcΦ4 dΦ

d
a

L is invariant under U(N) “global” symmetry:

]

Φ(x)→ UΦ(x)U†

where U is any constant U(N) matrices.

Remarks

1. It is a theory of N2 scalar fields.

2. One can also consider other types of matrices, e.g. N ×N real symmetric matrix, the corresponding
symmetry will be SO(N).

3. One could also introduce gauge fields to make the U(N) symmetry local (this point is important and we will
discuss it later).

Here we list the Feynman rules for this theory: The propagator:

〈Φab (x)Φcd(y)〉 =
a

cb

d
= g2δadδ

c
bG(x− y)

The fermion vertex:
a

b

c

d e
f

g
h

=
1
δa

g2 hδ
c
bδ
e
dδ
f
g

So here we can adapt the double line notation:

a

cb

d
→ g2

a

b c

d

a

b

c

d e
f

g
h

→ 1

g2

a

b

c

d e

f

g

h
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Vacuum energy

We consider vacuum bubbles, i.e. diagrams with no external legs. The lowest order diagrams will be

→ (1)

→ (2)

In the case of diagram 1, each contracted index line gives N , so the total contribution will be of the order

N3 (g2)2 3
2 = N g2. In the case of diagram 2, there is only one contracted line, the total contribution will be of theg

order Ng2. The difference comes from the fact that the matrices do not commute. In the first case, the diagram
can be drawn on a plane without crossing lines, we call it a planner digram; while in the second case, the diagram
cannot be drawn on a plane without crossing lines, we call it a non-planar diagram.

If we consider next order in the perturbation theory

→ (3)

→ (4)

The first diagram gives the order of N4g4, the second diagram gives the order of N2g4. We can further consider
higher order diagrams, but how can we obtain general N-counting? And how to classify all the non-planar
diagrams?

To answer the above questions, we make 2 observations

• Diagrams 2 and 4 can be drawn on a torus without crossing lines.

(5)

• The power of N for each diagram equal to the number of faces in the diagram after we straighten it out.
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