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1 Introduction 

Today we’ll continue our discussion of large N scaling in the t’Hooft limit of quantum matrix 
models. In particular, we’ll review the N counting for vacuum diagrams and learn how to do N 
counting for correlators. Our perspective on the large N limit continues to be one of convenience. It 
is one of several assumptions that enable the simplest realization of holography and gauge/gravity 
duality. Next time we’ll continue talking about simplifying assumptions and turn our attention to 
conformal invariance. 

2 Vacuum t’Hooft counting 

Let’s recall our starting point. We were thinking about matrix field theories, field theories in 
which all the fields are N x N matrices in addition to whatever other labels they may have. In 
particular, we write our theory schematically in terms of one big field Φ which we think of as 
potentially including scalars φ, gauge fields Aµ, and fermions ψα all of which are N x N matrices. 
The schematic Lagrangian is 

1 
L = Tr (∂Φ∂Φ − V (Φ)) (1)

2g

where V (Φ) ∼ Φ2 + Φ4 + ... and all products should be thought of as matrix products. This 
schematic representation is meant to convey two pieces of information. First, that the Lagrangian 
is invariant under U(N) rotations which act on the matrix fields by conjugation: Φ UΦU−1 .→
Second, that the fields are scaled so that the coupling g2 sits out in front of the entire Lagrangian. 
In particular, we have to very careful about field normalizations when doing large N counting for 
correlation functions. The t’Hooft limit is the limit where N → ∞ and g2 0 while λ = g2N 
remains fixed. λ is the t’Hooft coupling. 

→ 

Note that we are adopting a different normalization condition than in the previous lecture on large 
N counting (there we used the field Φ̃ = (1/g)Φ which had kinetic terms with the usual field 
theory normalization). With our current normalization the propagator �ΦΦ� goes like g2 = λ .N 
The propagator in the double line notation appears in Fig. 1. Remember that for the purposes of 
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large N counting we are instructed to think only about counting powers of N, so we will suppress 
positions of fields, spin indices, etc in our analysis. 

In a generic matrix theory there will be three point (Fig. 2) and four point (Fig. 3) interaction 
vertices. Both types of vertices come with factors of 1/g2 = N/λ from the overall 1  /g2 multiplying 
the Lagrangian. A general diagram consists of propagators, interaction vertices, and index loops, 
and gives a contribution 

 no. of prop.  no. of int. vert. λ
diagram ∼ 

�
 
� �

N 
�

no. of index loopsN . (2)
N λ 

For example, the planar diagram in Fig. 4 has 4 three point vertices, 6 propagators, and 4 index 
loops giving the final result N2λ2 . 

Figure 1: Propagator, λ/N


Figure 2: Three point vertex, N/λ


We learned last time how we to associate a triangulated surface with a Feynman diagram in two 
ways. The first way is to let the interaction vertices of the diagram be the vertices of the triangu­
lation. In this case the index loops of the diagram bound pieces of surface. The alternative is the 
dual triangulation in which we place vertices in the middle of the index loops of the Feynman dia­
gram. Two vertices are connected if their respective index loops share a propagator in the Feynman 
diagram. Don’t be confused by multiple uses of the word vertex. There are interaction vertices of 
various kinds in the Feynman diagrams and these correspond to vertices in the triangulation only 
in the first formulation. 

If E = no. of prop., V = no. of int. vert., and F = no. of index loops then we showed last time 
that the diagram gives a contribution NF −E+V λE−V . The letters refer to the first way to triangulate 

Figure 3: Four point vertex, N/λ 
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Figure 4: This diagram consists of 4 three point vertices, 6 propagators, and 4 index loops


the surface in which interaction vertices are triangulation vertices. Then we interpret E as the 
number of edges, F as the number of faces, and V as the number of vertices in the triangulation. 
In the dual triangulation there are dual faces F̃ , dual edges  Ẽ, and dual vertices Ṽ . The relationship 
between the original and dual variables is E = Ẽ, V = F̃ , and  F = Ṽ . In the dual formulation we 
found that a diagram contributes N F̃− ˜ ˜ ˜  E+V E− ˜

λ F . It’s not a coincidence that the powers of N agree 
in both formulations. The exponent χ = F − E + V = F̃  − Ẽ +  Ṽ is the Euler character and it is 
a topological invariant of two dimensional surfaces. In general it is given by χ = 2 −  2h − b where 
h is the number of handles (the genus) and b is the number of boundaries. Note that the exponent 
of λ, E − V or Ẽ − F̃  is not a topological invariant and depends on the triangulation (Feynman 
diagram). 

Before we continue with the analysis its worth pointing out that there are other large N limits 
one might want to consider. The motivation for the t’Hooft limit comes in part from thinking 
about radiative corrections which grow with N and decrease with g. This suggests some sort of 
balancing act might be possible which keeps the theory non-trivial in the large N limit. We encode 
this scaling by fixing λ = g2N as we make N large. Other interesting possibilities are provided by 
critical points of the matrix model. Suppose when g = gc the matrix model is at a critical point. 
Then there may be a sensible large N limit in which we fix |g − gc|αN as we make N large. One 
example of this is matrix quantum mechanics with an inverted oscillator potential. 

Back to the t’Hooft limit. Because the N counting is topological (depending only on χ) we can 
sensibly organize the perturbation series for the free energy in terms of surfaces! Because we’re 
computing only vacuum diagrams for the moment, the surfaces we’re considering have no boundaries 
b = 0 and are classified by their number of handles h. h = 0 is the two dimensional sphere, h = 1  
is the torus, and so on. We may write the free energy as 

∞  ∞  ∞  
ln Z = 

�
N 2−2h 

�
c λ� 
�,h = 

�
N 2−2hFh(λ) (3) 

h=0 �=0 h=0 

were the sum over surfaces is explicit. 

Now we can see some similarities between this expansion and perturbative string expansions. By 
writing N 2−2h = (1/N )2h−2 we can identify the string coupling gs = g(λ)/N where we can allow 
some function of λ in addition to the pure N dependence. Because of the proliferation of coupling 
constants, let’s rename the g2 in our matrix model g2 

Y M  in anticipation of the case of most interest 
to us when the matrix model is a gauge theory. The t’Hooft coupling is now written λ =  g2

Y MN  . 
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If 1/N plays the role of the string coupling gs (so that in the large N limit joining and splitting 
of strings is suppressed) then its reasonable to ask what plays the role of the worldsheet coupling. 
It turns out that we can think of λ as a sort of chemical potential for edges in our triangulation. 
Looking back at our diagram counting we can see that if λ becomes large then diagrams with lots 
of edges are important. Thus large λ encourages a smoother triangulation of the world sheet which 
we might interpret as fewer quantum fluctuations on the worldsheet. More formally, we expect a 
relation of the form  λ−1 ∼ α′ which encodes our intuition about large λ suppressing fluctuations. 

This story is very general in the sense that all matrix models define something like a theory of 
two dimensional quantum gravity via these random triangulations. The connection makes even 
more sense when we remember all the extra labels we’ve been suppressing on our field Φ. For 
example, the position labeling where the field Φ sits plays the role of embedding coordinates on 
the worldsheet. Other indices (spin, etc.) indicate further worldsheet degrees of freedom. We may 
think of the matrix model partition function as giving the ”thermodynamics” of the string theory 
in the sense that it provides the functions Fh entering the free energy. However, the microscopic 
details of the theory are not so easily discovered. In particular, it’s not at all clear what microscopic 
action we should integrate over moduli space to obtain the functions Fh. 

As a final check on the non-triviality of the theory in the large N limit, let’s see if the world sheet 
coupling λ will generically run in a matrix model. In d = 4 the one loop behavior is basically 
μ∂ 3

μ gY M  = βg ∼ gY MN = gY Mλ and this implies the beta function for λ is μ∂μ λ = βλ = 
2g 2

Y MNβg ∼ λ . Thus λ  can still run in the large N limit and the theory is non-trivial. If d =  then 
the beta function for g now looks like β ∼ 3 g N + 4−d  gY M  and we find that βλ ∼ λ2

g Y M  2 + 4−dλ2 
which is still finite in the large N limit. 

3 Correlation functions 

Let’s now consider how to calculate correlation functions of operators, and in particular, how to 
do large N counting for such correlation functions. We will consider only ”single trace” operators, 
operators O(x) that look like 

O(x) = c (k, N)Tr(Φ1(x)...Φk(x)) (4) 

and which we will often abbreviate as Tr(Φk). There are two annoying complications now. We must 
be careful about how we normalize the fields Φ and we must be careful about how we normalize 
the operator O. The normalization of the fields will continue to be such that the Lagrangian takes 
the form L = 1 

2 L = N  which (Φ) containing no explicit factors of N. To fix the normalization 
g λ

Y M  
L L

of O (to determine the constant c(k, N)) we will adopt the convention that 〈OO〉 0 
c ∼ N where the 

subscript c stands for connected. This convention is nice because states like O|vac〉 will have finite 
norm (given by the correlation function) in the large N limit. 

To use our convention to determine c(k, N) we need to know how to insert single trace operators 
into the t’Hooft counting. We do this by associating a new vertex with each single trace operator. 
This vertex has k legs where k propagators can be attached and looks like a big squid. An example 
of such a new vertex appears in Fig. 5 which corresponds to the insertion of the operator Tr(Φ6). 
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Figure 5: New vertex for an operator insertion of Tr(Φk) with k = 6  

Figure 6: Disconnected diagram contributing to the correlation function 〈Tr(Φ4)Tr(Φ4)〉 

For the moment we don’t associate any explicit factors of N with the new vertex. Let’s consider the 
example 〈Tr(Φ4)Tr(Φ4)〉. We need to draw two four point vertices for the two single trace operators 
in the correlation function. How are we to connect these vertices with propagators? The dominate 
contribution actually comes from disconnected diagrams like the one shown in Fig. 6. The leading 
disconnected diagram has four propagators and six index loops and so gives a factor λ4 2 ∼  N N2. 
One the other hand, the leading connected diagram shown in Fig. 7 has four propagators and four 
index loops and so only gives a contribution λ4 ∼ N0 . The fact that disconnected diagrams win in 
the large N limit is general and goes by the name ”large N factorization”. It says that single trace 
operators are basically classical objects in the large N limit 〈OO〉 ∼ 〈O〉〈O〉. As an aside, another 
convenient way to draw the connected diagram in Fig. 7 is shown in Fig. 8 where we have deformed 
the two four point operator insertion vertices so that they are ”ready for contraction” making it 
easier to draw propagators. 

Figure 7: Connected diagram contributing to the correlation function 〈Tr(Φ4)Tr(Φ4)〉 
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Figure 8: A redrawing of the connected diagram shown in Fig. 7


The leading connected contribution to the correlation function is independent of N and so 
 

〈OO〉c ∼ 
c2N 0. Requiring that 〈OO〉c ∼ N 0 means we can just set c = 1. Note that the MAGOO review 
normalizes their single trace operators with an explicit 1/N which is wrong. Having fixed the 
normalization of O we can now determine the N dependence of higher order correlation functions. 
For example, the leading connected diagram for 〈O3〉 where O = Tr(Φ2) is just a triangle and 
contributes a factor λ3N −1 ∼ N −1 . In fact, quite generally we have 〈O n〉c ∼ N 2−n for the leading 
contribution. 

The states O|vac〉 are called glueball states, and they correspond to excitations of the theory that 
are free at large N. These states also make sense from the string worldsheet point of view where 
the operator O is like an integrated vertex operator. 

We now want to study the generating function of correlation functions of single trace operators.  
Consider a compound operator like 

�
kA

A OA where each OA ∼ Tr(Φ ) is a single trace operator 
with kA � N . This is a multi-trace operator because it is the product of single trace operators.  
We can write a generating function for correlation functions like   using the operator  〈 A OA〉
ΔS = N 

�
A λAOA where the overall factor of N is meant to normalize

�
 ΔS in the same way as the 

Lagrangian. Remember that we’re suppressing all indices including spacetime locations of fields 
meaning there may be integrals involved in the proper definition of ΔS. The generating function 
is defined as 

 = − F Z e = 〈e− ΔS〉 (5) 

and when calculating Z we must remember that each OA acts just like an extra vertex with the 
normalization we defined above. 

As a simple check of the AdS/CFT correspondence we would like to determine the large N scaling 
of F . The naive answer is just that F ∼ N 2 because there are N 2 degrees of freedom, however this 
counting may fail for example when the theory is in a confining phase. Let us therefore assume 
the theory is not in a confining phase and calculate the large N behavior of F more carefully. In 
the free theory we do indeed have F ∼ N 2 just by our naive counting of degrees of freedom. What 
about in t’Hooft limit? We may lump the interactions in L in with the operators in ΔS since they 
are all single trace with an overall constant set by N. Then we can write the generating function as 

Z = 〈e− NO〉free  ≈ e− N〈O〉free  (6) 

because in the t’Hooft limit we have seen that single trace operators behave as if they are classical. 
Using our previous formula for the N dependence of correlation functions we find that 〈O〉 ∼ N so 
that F  N 2 because of the overall factor of N. ∼
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Let’s check this result using the GKPW formula relating the partition functions of field theory and 
supergravity 

Z = 〈e− ΔS 〉 = exp (−SSUGRA). (7) 
 

1 5 √ 
We can determine the N dependence of SSUGRA ∼ 5 

�
d x gR by scaling the action in terms 

GN 

of L the AdS scale. In five dimensions the Newton constant has units of length cubed, and so the 
correct scaled form of the action is SSUGRA ∼ 

 L3
. Using the fact thatdimensionless   L3/G5  

G5 S
2

N ∼ N
 

we discover that SSUGRA scales in the same w
N

 ay as F from the field theory. This fact follows from 
the relation L4 (  / α′)4 = λ which we found by studying the RR soliton, from the ten dimensional 
Newton constant in string units G10 = g2(α′)4N s , and from the definition λ =  g2

Y MN  = gsN . The
assumption of a non-confining ground state on the field theory side translates into the absence of 
additional scales in the bulk spacetime that would invalidate our scaling argument. 

Figure 9: A quark vacuum bubble and a quark vacuum bubble with ”gluon” exchange


4 Simple generalizations 

We can generalize the analysis performed so far without too much effort. One possibility is the 
addition of fields, ”quarks”, in the fundamental of U(N). We can add fermions ΔL ∼ qγ̄μDμq or 
bosons ΔL ∼ |Dμq|2 . Because quarks are in the fundamental of U(N) their propagator consists 
of only a single line. When using Feynman diagrams to triangulate surfaces we now have the 
possibility of surfaces with boundary. Two quark diagrams are shown in Fig. 9 both of which 
triangulate a disk. Notice in particular the presence of only a single outer line representing the 
quark propagator. We can conclude that adding quarks into our theory corresponds to admitting 
open strings into the string theory. We can also consider ”meson” operators like ¯  qq or q̄Φkq in
addition to single trace operators. 

Another direction for generalization is to consider different matrix groups such as SO(N) or Sp (N). 
The adjoint of U(N) is just the fundamental times the anti-fundmental. However, the adjoint 
representations of SO(N) and Sp(N) are more complicated. For SO(N) the adjoint is given by the 
anti-symmetric product of two fundamentals (vectors), and for Sp(N) the adjoint is the symmetric 
product of two fundamentals. Also, lines in the double line formalism no longer have arrows. As 
a consequence the lines in the propagator for the matrix field can join directly or cross and then 
join as shown in Fig. 10. In the string language the worldsheet can now be unoriented, an example 
being given by a matrix field vacuum bubble where the lines cross giving rise to the worldsheet 

2 
RP . 
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Everything we’ve said for large N matrix models can be contrasted with the story for large N 
vector models. The difference between these two classes of models is that large N matrix models 
have N2 degrees of freedom while large N vector models have only N degrees of freedom. This 
changes the scaling of the coupling in the large N limit. The Lagrangian of a large N vector model 
might look something like  � � � �L = ∂φ  ∂φ  NV  (φ  φ/N) where the whole second term has the form 

 ∼ 2� 
− ·

NV m φ · �  
·

φ − � �λ 2
v/N (φ · φ) . This form of the Lagrangian amounts to many more interactions 

than in the large N matrix model. The coupling gv = λv/N ∼ 1/N (λv is not the t’Hooft coupling!)  
goes to zero much faster than the coupling in the matrix model gY M  

√∼ 1/ N . Because of the 
different scaling, the only interactions in the standard large N vector model are ”cactus” diagrams. 
This means that modulo some self energy corrections the theory is essentially free. There also don’t 
appear to be any strings. 

Figure 10: Propagator for SO(N) (+) or Sp(N) ( ) matrix models
−

5 Large N vector models 

6 Preview: the need for strings 

As a preview of coming attractions, let’s see what matrix models can tell us about the appearance 
of string theory in gauge theory. Recall that we said every SUGRA perturbation in AdS5 × S5 

corresponds to some single trace operator in N = 4 SYM. In particular, we found a correspondence 
between symmetric scalar KK modes in SUGRA and chiral primary operators in the N = 4 theory. 
However, this map from SUGRA modes to N = 4 operators is not onto, in fact it represents a very 
small subset of the N = 4 operators. We would like to know what the rest of the N = 4 operators 
correspond to in the gravity theory. A clue comes from looking at single trace operators like 

O = Tr(XXXXXY XXDXX...Y X) (8) 

which we think of as a string of J letters (with 1 � J � N). Because of the cyclic property of the 
trace, this string of letters looks a lot like a sequence of operator insertions on a closed string! 
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