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In today’s lecture we will talk about:

1. AdS wave equation near the boundary.

2. Masses and operator dimensions: A(A — D) = m2L2.

Erratum: The massive geodesic equation & + I'td = 0 assumes that the dot differentiates with
respect to proper time.

Recap: Consider a scalar in AdS,;2 (where p + 1 is the number of spacetime dimensions that the
field theory lives in). Let the metric be:

2 12 dz* + datdz,,

d e )
then the action takes the form:
Slol = —5 [ e V(00 + mPe? + 50+ ), (2)
where (0¢)? = g4P04¢0p¢ and x4 = (z,2"). Our goal is to evaluate:
In(exp™/ 4779 O)cpp = extremumig | g ot 2=qS[9), (3)

where S[¢] = S[d*(¢po)] = W]go], i.e. by using the solution to the equation of motion subject to
boundary conditions. Now Taylor expand:

Wipo] = W[0] + /le’ ¢o(z)G1 () + % //dDmldDm do(z1)¢o(w2)Ga(21,22) + ... (4)

where

Cr(z) = (O(a)) = %rmzm (5)
2w

~ 060(x1)0¢0(x2) lon=0-

Ga(z) = (O(z1)0(x2))c
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Now if there is no instability, then ¢g is small and so is ¢, so you can ignore third order terms in
¢. From last time:

K K

Slél = = /Adsm @ /516 (~V2 +m?) 6+ O(%)] - 2 /aAdS P 56 md) e, (7)

where the last term is the boundary action, n is a normalized vector perpendicular to the boundary
and )
V? = —0a(vg9”*" 0p). (8)
g e

Now if the scalar field satisfies the wave equation:

(=VZ+m?)¢* =0, (9)
Wigol = Seay[¢*[¢0]], (10)

then we can use translational invariance in p + 1 dimensions, z* — z* + a*, in order to Fourier
decompose the scalar field:

d(z,2") = eFT fi(2). (11)
Now, substituting (11) into (9) and assuming that the metric only depends on z we get:
1
0 = (¢"kuky — —08:(v/99770.) +m?) fi(2) (12)
V9
1
= ﬁ[22k2 _ ZD+18Z(Z—D+182) + m2L2]fk, (13)

where we have used g"¥ = (z/L)?6*. The solutions of (12) are Bessel functions but we can learn a
lot without using their full form. For example, look at the solutions near the boundary (i.e. z — 0).
In this limit we have power law solutions, which are spoiled by the z2k? term. Try using f; = 22
in (12):

0 = k2z2+A o ZD+162(AZ_D+A) + m2L2ZA (14)
= (k222 — A(A — D) + m2L?)2%, (15)

and for z — 0 we get:
A(A — D) = m2L? (16)

The two roots for (16) are

2
pe= 2 (2) s a



Comments

e The solution proportional to 22~ is bigger near z — 0.
e AL >0 VY m, therefore 22+ decays near the boundary.

[ ] A++A_:D

Next, we want to improve the boundary conditions that allow solutions, so take:

(;5(3), Z)|z=e = ¢0($7 6) = 6A7¢é%en(x)v (18)

where ¢f°" is the renormalized field. Now with this boundary condition, ¢(z,z) is finite when
€ — 0, since qﬁ(}fe" is finite in this limit.

Wavefunction renormalization of O (Heuristic but useful)

Suppose:

w

Shdy

/Z:E drtiy Ve ¢o(z,€)O(x, €) (19)
_ / P <€>D (- 6l (2)) O, ), (20)

where we have used /7 = (L/¢)”. Demanding this to be finite as ¢ — 0 we get:

O(z,e) ~ €P=2-0F () (21)
= B ofen(z), (22)

where in the last line we have used AL + A_ = D. Therefore, the scaling of 0" is AL = A.

Comments
e We will soon see that (O(z)0(0)) ~ %5 .

|z

e We had a second order ODE, therefore we need two conditions in order to determine a solution
(for each k). So far we have imposed:

1. For z — ¢, ¢~ 2%~ ¢y + (terms subleading in z). Now we will also impose

2. ¢ regular in the interior of AdS (i.e. at z — 00).

Comments on A

1. The - factor is independent of k and x, which is a consequence of a local QFT (this fails
in exotic examples).



2. Relevantness: Sincem? >0 = A=A, > D, so Oy is an irrelevant operator. This means
that if you perturb the CFT by adding Oa to the Lagrangian, then:

AS = /dD:E (mass)? =204, (23)

where the exponent is negative, so the effects of such an operator go away in the IR. For
example, consider a dilaton mode with [ > 0, its mass is given by (for D = 4):

(I+4)
The operator corresponding to this is:
tr(F2X0 ), (25)

with A =441 > D, therefore it is an irrelevant operator. Now consider a dilaton mode with
I = 0: then m? = 0, therefore, A = D and hence it corresponds to a marginal operator (an
example of such operator is the Lagrangian). If m? < 0, then A < D, so it corresponds to a
relevant operator, but it is ok if m? is not too negative (”Breitenlohner - Freedmasn (BF) -
allowed tachyons” with —|mpp|? = —(D/2L)% < m?).

3. Instability: This occurs when a renormalizable mode grows with time without a source. But
in order to have S[¢] < oo, the solution must fall off at the boundary. This requires a gradient

energy that ~ % Note:
D D\

D
m2L2 < (5)2 = —\mBFP, (27)

then Ay is complex, therefore we have A_ = D/2, which is larger than the unitary bound. In
this case, ¢ ~ 2~ decays near the boundary (i.e. in the UV). In order to see the instability
that occurs when m?L? < (£)? more explicitly, rewrite (9) as a Schrodinger equation, by
writing ¢(z) = A(2)¥(z), where we choose A(z) in order to remove the first derivative of

¥(2). Then, equation (9) becomes:
(=02 +V(2)v(2) = By(2), (28)

where £ = w? — k?, V(2) = 0/2% and 0 = m?L? — (D? — 1)/4. An instability occurs when
E <0,ie. w? < 0andhence ¢ ~ e“tp(z) = etlwltp(2) grows with time. Now the claim is that
V = 0/2% has no negative energy states if ¢ > —1/4. Note that the notion of normalizability
here and before are related (Pset 4):

If:

112 = / dz §lp < oo, (20)
and S[6) = [ dz 5 ((06)* + m?) (30)

4. The formula we found before (expression (16)) depends on the spin. For a j—form in AdS we
have:
(A+§)(A+37—D)=m?L% (31)



For example, for A, massless we have:
A(j#*)=D —1 — conserved,

for g,,, massless we have:

A(T*) =D — required from CFT.

(32)

(33)



