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8.821 F2008 Lecture 14: Wave equation in AdS, Green’s function

Lecturer: McGreevy

November 11, 2008

Topics for this lecture

e Find ¢l?l(z) by Green functions in z-space (efficient)
e Compute (OO), counter terms

e Redo in p-space (general)

References

e Witten, hep-th/9802150

e GKP, hep-th /9802109

Solving Wave Equation I (Witten’s method)
Let’s study the wave equation in AdS in some detail. This first method uses a trick by Witten

which is efficient but slightly obscure.

If we know “bulk-to-boundary” Green’s function K regular in the bulk, such that

(—O+m?)Kpy(z,2) =0 (1)
Ky(z,xz) — EA*(S?(:U —-p), z—¢€ (2)

where p is some point on the boundary,
then the field in the bulk

o0 (2,2) = [ P 0 @) o (2,) — 5 0@

solves (1).



Euclidean AdS

Recall the metric on AdS with curvature scale L in the upper half plane coordinates:
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Now here comes some fancy tricks, thanks to Ed:
Trick (1): Pick p = “point at 0co”. This implies that the Green’s function K (z, z) is z-independent.

The wave equation at k = 0:
0= [-2P110,27PH0, + m?| Koo(2)

can easily be solved. The solution is power law (recall that in the general-k wave equation, it was

the terms proportional to k? that ruined the power-law behavior away from the boundary)
Koo(2) = c4 2% 4+ c_ 27

We can eliminate one of the constants: ¢_ = 0, whose justification will come with the result.

Trick (2): Use AdS isometries to map p = oo to finite z. Let 24 = (2#, 2), take 24 — (/)4 =
24 /(xBxp). The inversion of this mapping is:

© i
I:{ = 2
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P
Claim: 1
A) is an isometry of AdS (also Minkowski version, see pset 4)
B) is not connected to 1 in SO(D,2)
C)maps p=ootoxz =0,ie., I:Ky(z,1) = Koo(?,2') = Ko(2,2) = c1 2°F /(2% + 22) 2+,
Some notes:
(i) That this solves the wave equation (1) as neccessary can be checked directly.
(ii) The Green’s function is

2B+

Ky (z,x) = ¢t TR = K(z,z;2)

(iii) The limit of the Green’s function as z — 0 , i.e. the boundary is

czA+ — 0, ifx#a

cz B o0, ifx=2a

K(z,z;2') — {



(recall that Ay > 0 for any D, m). More specifically, the Green’s function approaches a delta
function:

K(z,2;2") — const - €26 (z — 2).
Clearly it has support only near x = z, but to check this claim we need to show that it has finite
measure:

/dee_AK (e,x) = /deceAJr_A
one (2 + z2)A+

_ ceP 28+ =D i 1
28+ (1+z2)A+

TIT(Ay — D)
I'(A4)

We will choose the constant ¢ to set this last expression equal to one. Hence,

¢[¢o} (2, )

/ dPz' K. (z,2) P (x)

Ay
z Ren

B /delc(z2 + (z —2/)2)A+ 70 () ;

this solves (1) and approaches ¢~ g5 () as z — .

The action is related to expectation values of operators on the boundary:

S|:¢[¢O}] = —In(e /%)

= =2 VAen-

2 Joads

-3 [ dPevg ot 00000

= =1 [ PandPs 65 )0 @) )

=€

where the “flux factor” is

K : K .
]:6(5U1>$2)E/dDa: (2, 25 21)20; K (2, ; 22)

ZD z:e'
The boundary behavior of K is:
KA+(z,x; ') = A ((5ED(:J: —2') + (’)(62)) + At <(:C—QCZI)QA + (’)(62)>
the first terms sets: ¢! = ng(AJr - %)/F(AJF), the second term is subleading in z.
1
z@zK(z,x; x/) . = A+5A—5(m — x’) + A+CzA+m +...

Ok, now for the 2-point correlation function on the boundary:

R
— Sepo(x1) Sobo(

Ga(z1,22) = (O(21)0(22))e ~ (_5 [¢[¢O]}> = nF. (1, 22).
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We must be careful when evaluating the cases x1 # x2 and x1 = z2, which we do in turn.

Firstly, if x1 # za:

U DD (,A_sD 2 : Ayt 2
Go(r1 # 19) = 2/ dPxz7" (22767 (x — x1) + O(27)) | (ignore by z1 # x2) + (21 — 22)757 + O(29)
_n —D+A_4AL 1 2
20A+6 (1 — 22)757 + O(€?)
ncAy

2(351 — $2)2A+ .

Good. This is the correct form for a two point function of a conformal primary of dimension A
in a CF'T}; this is a check on the prescription.

Secondly, if x1 = za:

_ 9A_-D:D( . cAy 2 oA, —D [ ;D 1
Go(z1,22) =1 (Ae 07 (21 —x2) + (21— )57 + A cte /d x(x o)A (5 = x2)2A+>

As e — 0, the first term is divergent, the second term is finite, and the third term vanishes. The
first term is called a “divergent contact term”. It is scheme-dependent and useless.

Remedy: Holographic Renormalization. Add to Sgeometry the contact term

AS=S. = 1 / @V (~A_ 2P (g5 (2)?)
bdy
= -a] VA (2, 2).
0AdS,z=e

Note that this doesn’t affect the equations of motion. Nor does it affect Ga(z1 # z2).

Solving Wave Equation II (k-space)

Since the previous approach isn’t always available (for example if there is a black hole in the
spacetime), let’s redo the calculation in k-space.

Return to wave equation
0 — [zDH(‘)Z (z*DH(‘)Z) —m2I2 _ szz] Fr(z)
with k2 = —w? + k? > 0. The solution is

fu(2) = Ag22 K, (k) + A2 2 I (k2),

with v = \/(D/2)2 + m2L? = A, — D/2. Assume k € R (real time issues later). As z — oc:
K, ~ e % and I, ~ €. The latter is not okay, so A; = 0.



At boundary:

n?(bo +bin? +bont +...), v ¢ R

v 2 4
K,(n)~n (ao+a1n + azxn +---)+{ n’Inn(bg +bn?+bn*+...), v ER

Hence

fu(2) = AgzPlPK, (kz) ~ 2 2B as 2 — 0.



