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8.821 F2008 Lecture 17:

More on 3-point functions, the chiral anomaly, and Wilson loops


Lecturer: McGreevy 

November 24, 2008 

1 Introduction 

1. Finish �OO∗J� 

2. Anomalies 

3. Wilson loops 

2 Calculation of a 3-point function 

Consider a CFT with a conserved U(1) current J . The operator OΔ is an operator in the CFT 
with scaling dimension Δ that couples to a charged scalar field φ in the bulk, while the complex 
conjugate of this bulk scalar field couples to O∗ Suppose that there is a massless vector field A inΔ. 
the bulk that couples to Jµ. The minimal coupling of this charged scalar field to the vector field 
leads to a vertex (−iηgAB(w)), which gives the leading contribution to the three-point function 

Gµ (x2)Jµ(x3)�Δ123 ≡ �OΔ(x1)O∗ � � →
dDwdw0 

←
∂ 

= 
w 

(−iηgAB(w)) KΔ(w|�x1)
∂wB K

Δ(w|�x2) Kµ (w|�x3). (1)
D+1 A
0 

The double-arrow means take the derivative acting to the right minus the derivative acting to 
the left. KΔ is the bulk-to-boundary propagator for the charged scalar field and KA

µ (w|�x3) is the 
bulk-to-boundary propagator for the gauge boson. The bulk-to-boundary propagator for the vector 
field solves the bulk Maxwell equations and goes to a delta function at the boundary (it goes to 
δ(w� − �x) as w0 → 0). The Witten trick that we used to deduce the bulk-to-boundary propagator 
for the scalar field can also be used to obtain the bulk-to-boundary propagator of the vector field. 
We claim that it implies: 

D−1 

KA
B(w|�x) = CD (w − 

w

�x
0 

)2(D−1) 
JB(w − �x), (2)A 
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were CD is some normalization constant and JA
B is a Jacobian for inversion – it is given by 

B 

JB(x) ≡ δB xAx
, (3)A A − 2

x2 

= x�2 ∂xA x�Awhich can be determined from JA
B 

∂x� , with xA = 
(x�)2 . This Jacobian arises because for the 

B 

Witten trick, one first finds the bulk-to-boundary propagator with the singularity at infinity and 
then performs an inversion to put the singularity at some finite value. 

Using the inversion trick and doing the w integral yields 

Gµ = Sµ(x1, x2, x3)η 
(Δ − D/2)Γ(D/2)Γ(Δ) 

. (4)123 πD/2Γ(Δ − D/2) 

Sµ is the unique combination of x1, x2, and x3 allowed by conformal symmetry and is given by 

1 x13 
µ x23 

µ 1 
Sµ(x1, x2, x3) = 

x 2Δ−D+2 x2
13 
− 

x2
23 x D−2 x D−2 . (5) 

12 13 23 

Using the Ward identity, 
∂ 

∂xµ 
3 
Gµ = i(δ(x13) − δ(x23))�OO∗�, (6)123 

we can determine the normalization of the two-point function: 

2Δ − D Γ(Δ) 1 �OO∗� = η
πD/2 Γ(Δ − D/2) x2Δ . (7) 
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This is the k-space calcualtion of this 3-point function; it is 2Δ−D × the position space answer. Δ 

Note the subtlety of the extra factor of Δ = Δ+ , which occurs only for two-point functions � 2Δ−D Δ+−Δ−

because the � dz is dicey. For higher point functions, this issue does not arise. This factor comes 
from the following. Recall our expression for the two-point function: 

�αz∂z(zD/2Kν (kz)) �α(Δ−�Δ + Δ+�Δ b0 ) 
Gz = 

�D/2Kν (k�) 
|z=� = 

�Δ 

− 

+ �Δ( b0 

+ a0 

)− + a0 

= �α(diverging term + �Δ+−Δ− 

a

b0

0 
(Δ+ − Δ−)). (8) 

Kν is a Bessel function and we have used Kν (k�) = �ν + a
b0
0 
� and Δ± = D 

2 ± ν. The dependence 
on k is absorbed into b0/a0. The divergence corresponds to some kind of contact interaction that 
we don’t care about. Because of this divergence, it is possible for the subleading term to actually 
“matter”. This is where the coefficient Δ+ − Δ− comes from. Witten’s position-space calculation 
takes the limit z 0 before taking this ratio, so this factor does not appear in his position-space →
calculation. 

Gravity dual of chiral anomaly 

Scale invariance and the SU(4)R symmetry of the N = 4 Super Yang-Mills theory are exact 
symmetries if the theory is defined on flat space with no sources. But, if we couple the SU(4)R 
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currents to some external gauge field A (which we can think of as the boundary value of some bulk 
gauge field in AdS) or if we have an external background metric (which we may think of as the 
boundary value of the metric in AdS), then there can be anomalies. This is because the gauginos 
(the λ’s) are in the 4 =� ¯ So we may have anomalies in the trace of the stress tensor, 4 of SU(4)R. 
Tµ

µ, or in the R-current. The parity-odd part of the three-point function of three R-currents in the 
N = 4 SU(N) theory is: 

�Ja
µ(x1)Jb

ν (x2)Jc
ρ(x3)�− = − 

N2 − 1 
idabc 

Tr (γ5γ
µ 

4 

x/12
4 

γν x/
4
23γ

ρx/31) (9)
32π6 x12x23x31 

The subscript refers to the parity-odd bit of the correlator and dabc ≡ 2Tr(Ta{Tb, Tc}). This −
three-point correlation function implies that if we couple the R-current to some background gauge 
field, then the divergence of the R-current will be: 

N2 − 1 
idabc�

µνρσF b(DµJµ)a = µν F c (10)
384π2 ρσ. 

This is one-loop exact, by the Adler-Bardeen theorem. 

Now we would like to see how to compute this anomaly at strong coupling using the gravity dual. 
In AdS5, Ja

µ couples to some SO(6) Kaluza-Klein gauge field Aa
µ. The statement of the anomaly is 

that the boundary symmetry, generated by the R current J , is broken by the non-zero field strength 
of the background gauge field. This global R-symmetry is generated by gauge transformations in 
the bulk, Aa Aa + (DΛ)a, where the gauge parameter Λ does not vanish at the boundary. → 

The effective action for Type IIB supergravity includes 

SKK ⊃ SY M [A] + SCS [A], (11) 

where SCS is a Chern-Simons term: 

iN2 

SCS [A] = 
96π2 TrA ∧ F ∧ F + · · · (12) 

AdS5 

Note that TrA ∧ F ∧ F = d5xdabc�
B1B2B3B4B5 AB1 FB2B3 FB4B5 . The Chern-Simons term arises 

because Type IIB supergravity breaks parity. The basic reason for this parity-breaking is that the 
five-form field strength is self-dual, not anti-self-dual. 

This Chern-Simons term is gauge invariant in the bulk; i.e. it is gauge invariant up to a total 
derivative. 

2p+1δSCS 

δA 
∼ TrF ∧ · · · ∧ F, (13) 

so under A A + DΛ, the change in the action is → � 
= 
−iN2 

d4x�µνρσdabcΛaF b 
ρσ. (14)δSCS 384π2 

∂AdS 
µν F c 

Here we have assumed dF = 0, or that there is no magnetic charge. Alternatively, since A couples 
to the R-current J , � � 

δSeff = d4xDµΛaJa
µ = − d4 xΛaDµJa

µ, (15) 

so can read off the anomaly (DuJµ)a. Notice that the coefficent matches at large N (ignore 1 in 
N2 − 1). The 1/N2 correction has also been matched. 
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4 Wilson Loops 

Now we turn to correlation functions of non-local operators, namely the Wilson loop operator, which 
is an important and interesting gauge theory observable. Let C be a closed curve in spacetime and 
R a representation of the gauge group. The Wilson loop is: H 

W (C) ≡ TrRPei C A . (16) 

P denotes path ordering of the exponential: 

∞ �� � n

W (C) = (i)n dtiAµ1 (x(t1))ẋµ1 (t1) Aµn (x(tn))ẋµn (tn) (17)· · · 
n=0 ti≤tj i=1 

Physically, this describes the Yang-Mills contribution to the propagation amplitude of an external, 
heavy, charged particle in the reprsentation R. It describes a heavy particle because we have fixed 
the trajectory of the particle, C, and we are not considering fluctuations of this path. If C is 
a rectangular path that stretches a length T in the time direction and a length L in the spatial 
direction, we have 

�W (C)� ∼ e−TV (L), (18) 

where V is the static quark-antiquark potential. This can be used as an order parameter for 
confinement – if V (L) ∼ L, we say that the theory is confining. 

Recall that in our discussion of ’t Hooftology, at large N a quark has a string ending on it. Are 
these the strings in AdS? 

To analyze this question, let us take a short detour back into the world of string theory. Consider 
a stack of N + 1 D3 branes sitting in some asymptotically flat space. There is therefore some 
U(N + 1) gauge theory living on the D3 branes. Suppose N is not so big, so that the gauge theory 
is at small ’t Hooft coupling. Suppose we take one of the branes and separate it from the other N . 
This corresponds to giving an expectation value to the adjoint scalars and breaking the U(N + 1) 
down to U(N) × U(1) (Figure 1). Suppose x� is the position of the single D3 brane and x is the 
position of the N other branes. The mass of the string which extends from the single brane to the 
N branes is proportional to the separation: mw ∼ |x − x�| α� .2π 

We claim that we can describe such a state at large ’t Hooft coupling λ by placing a “probe” D3 
brane in the “throat” at position zw = (2πmw)−1 in AdS (with N units of flux). A string stretches 
from this probe D3 brane down to the stack of N branes sitting at z →∞ (Figure 2). We can see 
that the string stretches from zw by matching the mass of this stretched string that falls into the 
horizon with the mass mw, which we can do because it is a BPS state and therefore we can follow 
its mass from weak to strong coupling. 

We can make our probe arbitrarily heavy, mw → ∞, by taking zw → 0 (that is, to the boundary 
of AdS). We do this to avoid fluctuations of the trajectory. 

This string is in the N of the U(N) and it couples to the adjoint scalars: the stretched string pulls 
on the branes so it affects the Xa(x) (Figure 3). It also couples to the fermions, but we ignore this 
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Figure 1: One of the D3 branes is separated from the other N , thus breaking the U(N + 1) down 
to U(N) × U(1). 

Figure 2: The string stretches into the throat from the probe D3 brane at zw. 

Figure 3: The string pulls on the stack of D3 branes, so it couples to the adjoint scalars.
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to leading order in 1/λ. This leads to the “Wilson-Maldacena” looop:


2W [C] = Tr P exp iAµ(x)ẋµ + ΩI XI (x)
√

ẋ dτ. (19) 

xµ(τ) is a parametrization of C. 
�6 

i=1(Ω
I )2 = 1. 

Now this generalizes the GKPW prescription: 

�W [C]�CFT = Zstring theory[F-strings end on C] (20) 

At small string coupling gs, contribution will be dominated by disk ampliitude. At large λ, the 
world sheet path integral is dominated by saddle point. Also, at large λ, we can ignore the S5 

coordinates and coupling to the 5-form flux. So, in this approximation, the string theory partition 
function is approximated by: 

Zstring theory ∼ 
� 

∂(world sheet)=C 
[DX]e−SN G[X]+··· ∼ e 

√
λmin(Area) (21) 

and 

Area[x] = 
� 

dσdτ 
� 

det ∂αxA∂βxB gAB (x) = 
� 

dσdτ 

� 
L4 

z4 det ∂x∂xδAB = L2AreaL=1[x]. (22) 

where recall gAB = L2 

z2 δAB. 
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