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8.821 F2008 Lecture 21: Confinement, continued 

Lecturer: McGreevy 

January 30, 2009 

• Confining geometry and mass gap (main lesson: mass gap −→ smooth minimum of the wrap 
factor in the dual geometry) 

Black hole mechanics • 

Last time we were talking about attempting to find a gravity dual of a deformation to 3D YM 
theory (which we get from the N = 4 on a thermal circle1). In these compactifications, the 3D YM 
coupling g3 is of order of the mass of the scalars 

g4N 
g3 ≈ mX ≈ (1) 

Ry 

where g4N is the 4D t’ Hooft coupling. The 3D theory is not just YM but it also has a bunch of 
scalars and this obscures our intuition about the theory. 

We can do a similar thing to get 4D YM theory by putting ND4 branes (at low energies) on a 
thermal circle with a radius Ry and again Fermions will have APBCs. The ND4 theory is a gauge 
theory in 5D with 16 supercharges and its well defined at low energies. The boundary conditions 
on the thermal circle will break supersymmetry and the fermions will get 4D masses of order 1/Ry 

while bosons will get masses at one loop of order m2 2Nmψ 
2 ≈ λ4/R

2 . At energies E ≈ 1/Ry ,X ≈ g4 y

the 4D and 5D YM couplings are related by 1/g2 /g2 which implies that mX ≈
√

λ4/Ry. The 4 = Ry 5 

relation between the the 4D and 5D YM couplings comes from integrating over the extra dimension 
in the compactified theory. 

The nice thing about the above construction is that if at the UV scale (E = 1/Ry ), the t’ Hooft 
coupling λ4 ≪ 1, then the theory is asymptotically free and we can calculate the β function 
perturbatively. There will be a dynamically genrated mass scale Λ such that 

−1/λ4e 1 
√

λ4
ΛQCD ≈ 

Ry 
≪

Ry 
≪ mX ≈ 

Ry 
(2) 

Notice that 1/Ry plays the role of a UV. Its like putting the 4D YM theory on a lattice where Ry 

plays the role of a lattice spacing. If we probe the theory with energies of order 1/Ry we will see a 
5D theory (the UV completion). 

Remember that thermal circle means periodic boundary conditions for Bosons and antiperiodic boundary condi­

tions for Fermions 
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Notice also that when E < 1/Ry, we will have a pure YM theory. The previous analysis was for 
λ4 ≪ 1, the gravity dual has a curvature which goes like 1/λ4 and we can’t trust the supergravity 
description. The gravity dual is valid when ΛQCD ≫ UV, i.e, when λ4 is large. At large λ4 the 
QFT isn’t weakly coupled at the cutoff, so there is never a regime where the usual perturbative 
calculation of asymptotic freedom is valid. 

Back to the 3D case 

Despite that the 4D YM theory is a little bit cleaner in the weak coupling limit than the 3D case 
but the details of the gravity dual in the 3D is simpler. To find a gravity dual we would like some 
solution which satisfies Einstein equations in the bulk with a negative cosmological constant 

gab = Λgab (3) Rab − 

which asymptotes at the boundary to R2 ×Sy 
1 . There are two solutions which satisfy these require­

ments 

1 

2

y 

NOTHING 

zm z=0 

(a) Compactify a circle on AdS 

(b) The other solution which is slightly more interesting is 

L2 � dz2 � 

ds2 = − dt2 + d~x 2 + fdy2 + , (4) 
z2 f 

where 
4z

f = , = y + 2πRy (5) 1 −
z4 

y ∼
m 

Note that f has a zero at zm where the radius of the y circle shrinks to zero. For a random value of 
z there will a canonical deficit angle. For z < zm, there is NOTHING, i.e, when the circle shrinks 
the space ends. We can make the solution much more well defined if we demand that there is no 
singularity at z = zm. Locally near z = zm, 

ds2 = κρ2(z)dy2 + dρ2 + , (6) · · · 

where, 
� 2 

ρ = zm(z − zm), κ = “Surface gravity” (7) 
zm 
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This form of the metric makes it clear that the shrinking of the y circle is like a cone where the y 
direction is fibred over the ρ direction which shrinks to zero at z = zm. To avoid the conical deficit, 
we chose the periodicity of y such that 

= y + 2πκ−1 = θ + 2π (8) y ∼ −→ θ ≡
κ

y ∼

and the metric becomes 
ds2 = ρ2dθ2 + dρ2 + (9) · · · 

and ρ = 0 is the origin of the polar coordinates. If we chose a different periodicity there will be a 
conical deficit angle. 

To match the boundary conditions and since we know that y is periodic with a period 2πκ−1 where 
κ = 2/zm, then zm = 2Ry. The topology of the boundary is R2+1 ×S1 and the topology of the bulk 
is R2+1 ×D2(z, y), where D2(z, y) is a disk with angular coordinate y and the y circle is contractible 
in the bulk which implies APBCs on the bulk Fermions. 

Side Comments 

• The importance of APBCs on the circle for the existence of a solution where the geometry ends 
is quit reminiscent of the instability of the Kaluza-Klein vacuum [1] to the appearance of a bubble 
of nothing, which can only exist if we put APBCs on the Fermions, and is similar to the region 
z < zm here. 

• We should think of the two solutions which we described as two saddle point contributions to the 
path integral of gravity with the specified boundary conditions. The solution which dominates is 
the one which has a smaller action when evaluated on the saddle point. John claims that solution 
(b), which has a mass gap, dominates over (a) and its free energy wins for all values of Ry. 

1,2
X , t 

looks like a boundry 
if we ignore the y direction zm z=0 

(f=1, AdS) 

The warp factor in (b) has a minimum, Wmin(z) ≈ 1/z2 ,• m

dz2 

ds2 = W (z)2dxµdxµ + 
2 

. (10) 
z

Heuristically, the reason why there is a mass gap is that if we have a particle propagating in this 
space it will fall to this minimum value of the warp factor which acts like a gravitational potential, 
i.e, lowest energy states are localized around z = zm unlike the Poincaré AdS case where particles 
fell to the Poincaré horizon. This statement will be made more precise next time. 
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The spectrum of the 2+1 theory from the 2 point function 

Lets think about the two point function in momentum space of some gauge invariant operator such 
as the glueball operator O = TrFF . In a unitary field theory, the two point function has the 
spectral representation 

� ∞ 1 
G2(k) = = dµρ(µ) , (11) 〈O(k)O(−k)〉

0 ω2 − ~k2 − µ2 

where ρ(µ) is the density of states in the field theory which couples to the operator O, 

ρ(µ) = ‖〈µ|O(−ω,−k)|0〉‖2 (12) 

and unitarity implies that ρ(µ) ≥ 0. If there is a mass gap then ρ will have support only above 
some µmin, 

ρ(µ < µmin) = 0. (13) 

If there is a discrete spectrum then 

ρ(µ) = ciδ(µ − Mi) (14) 
i 

this need not be the case if there is no mass gap. 

Consider a bulk scalar φ with mass m in this confining background with the action 

S = 
√

g 
�
(∂φ)2 + m 2φ2

� 
, (15) 

where we kept only the quadratic part since we are interested in the two point function. For 
example, φ could be the dilaton with its zero momentum mode on the sphere (m = 0) couples to 
the glueball O = TrFF . 

To compute G2 we use the following ansatz for φ 

φ = φk(z)e −iωt+i
~k·~x (16) 

and without loss of generality we will set ~k = 0. This is justified by the fact that as long as there 
is no instability then modes with finite ~k will have higher energies than modes with ~k = 0. Now 
we plug the above ansatz for φ in the bulk wave equation 

00 zz∂z0 = |g |ω2φk + √1 

g
∂z(

√
gg φk)m 2L2φk (17) 

In the interior, z = zm is like the origin of polar coordinates and and regularity at zm implies that 

∂zφ z=zm = 0 (18) |

this condition replaces the condition of finiteness at the Poincaré horizon for the usual AdS. At the 
boundary, we should impose that the solution is normalizable. This because we want to find the 
spectrum of the theory in the vacuum without any sources. Remember that the general solution of 
the wave equation near the boundary behaves as 

φ ∼ z Δ− φ0 + z Δ+ A, (19) 
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where Δ− is the dimension of the source φ0, Δ+ is the dimension of the operator to which φ0 

couples, and we showed before that 
A ∼ 〈O〉φ0 . (20) 

If the source is small then we can use linear response (or by Taylor expanding A in φ0) to write 

A ∼ 〈O〉φ0 + O(φ2
0) ∼ G2φ0 = ⇒ G2 ∼

φ

A 

0 

, (21) 

the above equation says that if we find a normalizable solution with φ0 = 0 for some value of the 
frequency and A = 0, then the Green’s function G2 will have a pole. There is a general argument 
that poles in G2 never arise from A [2]. 

The general lesson from the above discussion is that to find poles of the Green’s function, we look

for normalizable solutions of the wave equation.


The wave equation after plugging the metric takes the form (we will drop the subscript k on φ)


m2L2 

ω2φ = −z D−1∂z(z 
D−1f∂zφ) + 

z2 
φ = Lφ (22) 

for some differential operator L. This is an eigenvalue equation which can be written as a Schrödinger 
equation (Pset 4). Poles in the Green’s function G2 will occur at the special values of ω⋆ 

2 = Mi 
2 for 

which L has normalizable eigenfunctions subject to the boundary condition at z = zm. Multiplying 
both sides of (22) with φ and integrating by parts we get 

� zm 
� zm 

ω2 dz
√

g g 00 φ2 = dz
√

g 
� 
g zz(∂zφ)2 + m 2L2φ2

� 
> 0 (23) ⋆ 

0 

| |
0 

≥0 and =0 iff φ=0 

The spectrum is as if the bulk geometry were compact (in that there are discrete energy levels), 
but there is no zeromode since the zeromode is not normalizable in AdS. 

Mass gap: Without zm, we would have an oscillating solution near z = ∞, i.e. continuous spectrum 
down to ω = 0. 

Region of validity: If λ = g2 (N = 4)N ≪ 1, we have a weakly coupled 3D YM at E ≈ 1/RyYM

which is UV completed by N = 4 SYM on S1 . The gravity description in this case is bad. For 
λ ≫ 1, the gauge theory is strongly coupled and the gravity description is good. 

-1r << (mass gap) 

z zm = 

z 
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