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8.821 F2008 Lecture 23: Black Hole Thermodynamics 

Lecturer: McGreevy 

December 2, 2008 

In today’s lecture we’ll discuss the laws of black hole thermodynamics and how AdS black holes 
are related to finite temperature CFTs, and Koushik will give a related presentation. 

Laws of Thermodynamics 

Recall from last time that for a black hole 

Area ∼ Entropy 

κ ∼ T (1) 

where κ was the surface gravity. The near-horizon metric is 

ds2 ∼ −κ2ρ2dt2 + dρ2 + ... = κ2ρ2dτ2 + dρ2 + ...	 (2) 

when we go to Euclidean time τ ≡ it. If τ has periodicity τ ∼ τ +2π/κ then the euclidean geometry 
is regular. 

Recall the canonical ensemble thermal partition function is 

Zth = tre −H/T	 (3) 

where e−H/T propagates the system with imaginary time t = 1/iT . Thermal equilibrium is equiv­
alent to periodic euclidean time with period 1/T , so we identify κ with temperature T . 

The laws of (stationary) black hole thermodynamics, analogous to the usual laws of thermodynam­
ics, are: 

•	 0th (thermal equilibrium): κ is constant over the event horizon. This means temperature 
is constant in space and time. Thus stationary black holes are in thermal equilibrium with 
constant temperature. John thinks the proof of the 0th law doesn’t depend on the shape of 
the black hole, as long as its a stationary solution. 
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•	 1st (conservation of energy): 

κ 
dE = dM = ΩdJ + ΦdQ + dA (+PdV )	 (4) 

8πG 
κΩdJ is the change in rotational energy, ΦdQ is the electrical energy, and 8πGdA = TdS is 

heat exchange. This law relates the change in the energy (or equivalently mass) to changes 
in various properties of the black hole. 

The last term describing mechanical work PdV isn’t present for black holes but IS for black 
branes... 

2nd (entropy increases): This is the area theorem for a black hole we proved last lecture, • 
˙	 AA ≥ 0, since S = (Proof of the exact relation between S and A in a later lecture.) 4�G . 

•	 3rd (absolute zero entropy): κ (or rather T ) cannot taken to zero in a finite number of 
steps. This doesn’t mean that S(T = 0) = 0, but it does probably mean at T = 0 there is a 
minimum in entropy. 

These laws follow from Einstein’s Equation, the energy condition we discussed last class, and 
assuming we have stationary black holes. 

1.1 3rd law 

Since we discussed the 2nd law last time, and the 0th and 1st laws are pretty convincing, we now 
provide some evidence for the validity of the 3rd law. 

First, why isn’t it true that S(T = 0) = 0? Counterexamples are everywhere if you just open your 
eyes to them: 

It is well known to some people that there exist supersymmetric theories with LARGE ground • 
state degeneracies, ∝ eQα 

where Q is the charge and α is some power. So, S(T = 0) = 
ln(degeneracies) ∼ Qα . 

•	 The Kerr-Newman black hole is another counterexample. Here are some facts about the KN 
black hole that you can easily derive or look up: 

A = 4π(2M(M + µ) − Q2) 

µ = M2 − Q2 − J2/M2 

κ = 4πµ/A	 (5) 

The black hole is extremal when µ = 0. (This is also the BPS bound when the black hole 
is supersymmetric.) If µ < 0 then there is a naked singularity. Note that that when µ = 0, 
κ ∝ T = 0 but S ∝ A =� 0. 

As for the claims of the 3rd law, we have some anecdotal evidence. Let’s consider a non-extremal 
KN black hole with J = 0, in other words a non-extremal RN black hole, so Q < M . (Everywhere 
Q is really Q ). |	 |
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What can we do to try to make this black hole extremal? We need to throw on some charge q and 
mass m, such that the black hole becomes extremal, namely 

M + m = Q + q (6) 

How, the mass m is attracted to the beautiful black hole by a force F ∼ Mm/r2 but the charge q is 
repulsed by a force F ∼ Qq/r2 . Thus for the matter to fall in freely, Mm > Qq. According to some 
mysterious algebra, this relation along with Q < M actually implies Q + q < M + m. Therefore 
you have to force the matter onto the black hole, which somehow adds heat and prevents you from 
cooling the black hole. Or you have to throw in infinitesimal little bits which takes FOREVER. 

2 CFT at finite temperature 

We’re going to use the power of AdSCFT to describe CFTs at finite temperature with black holes. 

In particular we mean a 3 + 1 dimensional relativistic CFT. The partition function is 

Z(τ) = tre −H/T = e −F/T (7) 

with free energy F , on a space with geometry S1 
th × Σ3 where the S1 has radius 1/T, τ ∼ τ + 1/T 

and Σ3 is some 3 manifold. We can give Σ3 finite volume as an IR regulator. 

This is a deformation of the IR physics (modes with ω ≫ T = EKK don’t notice). 

For large V3 = V ol(Σ3), then F = cV3T
4 which is clear from extensivity of F and dimensional 

analysis. 

3 AdS black holes 

This object goes by many names, such as planar black hole, Poincare black hole, black brane... 
This is a black hole in AdSD+1, but probably many of the equations below mean D = 4. The 
metric is 

ds2 = 
L2 

−fdt2 + d�x 2 + 
dz2 

z2 f 
4z

f = 1 −
z4 

(8) 
m 

We again put the �x coordinates on a finite volume space, for example in box of volume V3, x ∼ 
x + V3

1/3
, periodic BCs. Notice that if f = 1 we get the Poincare AdS metric, and in fact f only 

deviates from 1 at larger z representing the fact that this is an IR deformation. 

Whence: 
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It solves Einstein’s equations with a cosmological constant Λ = (D+1)(D+2) and asymptotes •	 2L2 

to Poincare AdS, differing only in the IR region with a horizon at z = zm, fixed t. 

•	 It’s the double Wick rotation of the confining solution with t = iythere, y = −itthere. 

•	 Analogous to how we got the AdS solution from the near-horizon limit of D3-branes, it’s the 
near-horizon limit of black 3-branes in R9,1, in particular the near-extremal RR soliton with 
geometry: 

−fdt2 + d�x2 
� dr2 

ds2 = � + H(r) + r 2dΩ2
5 

H(r) f(r) 

L̃4


H(r) = 1 + 
4
r
4r

f(r) = 1 − H 
4	

(9) 
r

(Again f = 1 gives the usual RR soliton.) Note that there also exists a black hole which 
asymptotes to GLOBAL AdS (with boundary S1 ×S3), which is known as AdS-Schwarzchild 
which describes a CFT on S3 at finite temperature T. 

Let’s check out the horizon properties so we can find the usual thermodynamic quantities we’re 
interested in. The near-horizon metric is 

L2 

ds2 ∼ κ2ρ2dτ2 + dρ2 + d�x 2 (10) 
2zm 

where κ = 2/zm and the temperature is T = κ/(2π) = 1/(πzm). Meanwhile the area of horizon is 

�	
� �3 

A = 
√

gd3 x = 
L

V3 (11) 
z=zm,fixedt zm 

Therefore the entropy is (in the deconfined phase of the gauge theory): 

S = 
A 

= 
L3 V

3
3 

= 
N2 

(πT )3V3 = 
π2 

N2V3T
3	 (12) 

4G5 4G5 zm 2π 2 

(Recall from long ago that 4
L
G

3

5 
= N

2π 

2 
.) 

Again, we want some anecdotal evidence (at least) to support the claim that this describes a CFT 
in thermal equilibrium. There are some checks. One is just by checking the first law, which relates 
horizon quantities such as T, S to global quantities such as the free energy F . Koushik will explain 
just how in his talk, as sketched below. 

Consider again the partition function which we claim is ZCFT = e−Sg = e−βF . Sg is the onshell 
gravity action for the black hole solution and is equal to 

Sg = SEH + SGH (+Sct).	 (13) 

dDEH means Einstein-Hilbert and GH means Gibbons Hawking, SGH ∼ x
√

γK is a boundary ∂M 
term for the action such that when we vary Sg we get the usual equations of motion. ct means 
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counter-term, as we need to subtract some divergences as r 0. You can see hep-th/9902121 for →
some details. 

Thus by plugging in the AdS planar black hole solution we obtain the free energy, and consistent 
with the entropy calculation we did above we obtain 

F L2 1 π2 

= 4 = N2T 4 (14) 
V 16πG5 rH 8 

V = V3 probably. Also, zm = rH . This we claim is the strong-coupling free energy. As for the 
field theory calculation it has been done at weak coupling and one obtains 4/3 times the answer at 
strong coupling. 

Let’s consider also the boundary stress tensor T µν which couples to the induced metric on the 
boundary γµν . The energy is E = V

√
γTt

t and the pressure P involves similar expressions with 
x, y, z components of T . This is also a straightforward calculation using the action above and one 

4 4obtains (E/V ) = 3/(2rH ) and P = 1/(2rH ) which satisfies E = 3P , so Tµ
µ = 0 as required in a 

CFT. One can do the same for the AdS Schwarzchild black hole, where E = 3/(2r4 )+3L2/(8G). As H

T 0, rH → ∞ but E is nonzero and in fact matches the calculation for the zero-point (Casimir) →
energy for N = 4 SYM on a sphere of radius L. (There is no extra 4/3 factor because...) 
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