Problem Set 3

8.952 Fall 2004

- 1. Work out the classic cosmic tests (luminousity distance, angle distance, source counts) for the $k \neq \text{FRW}$ universe, for small z. Then determine how to measure the (spatial) curvature of the Universe.
- 2. Calculate the drag on charged particles moving throught the μ -wave background. How does this affect the growth of small inhomogeneities by gravitational attraction?
- 3. What owuld be the qualitative effect of the following on light nuclear abundances? Say whether $\frac{d}{p}$ and $\frac{He}{p}$ would go up, go down, or remain pretty constant in response to:
 - (a) Larger $\frac{n_b}{n_{\gamma}}$
 - (b) G_F smaller (weak interaction slower)
 - (c) more neutrino species
 - (d) G_N larger (gravity stronger)
 - (e) α smaller
 - (f) α_S smaller
 - (g) m_{μ} , m_d , m_e , m_s vary: optional—this could be a research project. What are the anthropic implications—how sensitive is the existence of life as we know it to all of these factors?