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Part 4.
STATISTICAL MODELS AND METHODS

Any study of a problem begins with a clear statement of what we seek to learn and why

we seek to learn it. Most academic studies have in mind several competing explanations of

a phenomenon of interest, and studies begin by deriving from the competing explanations

speci¯c expectations about the behavior in question. These questions predict patterns of

behavior or relationships between variables. Empirical researchers attempt to build statisti-

cal models that are appropriate to the theoretical questions at stake and to draw inferences

about theories by testing predicted outcomes against observed data.

Let us consider a couple of established areas of research in political science.

Why has turnout declined over the last 40 years in US elections? One common approach is

to study who is more likely to vote and to measure the e®ects of demographic characteristics

and political attitudes on participation. Several very important factors appear, such as

age, education, and income. Older, better educated, and wealthier people participate more.

Curiously, these have all increased since 1960 (the high-water mark of turnout in modern

US elections), but turnout has declined. What might explain changes in turnout?

What is the incumbency advantage and what factors contribute to it? Over the last

50 years, the reelection rates and vote margins of US House incumbents have grown dra-

matically. This is a distinctive feature of American elections, and it is a challenge to know

why it occured. Among the conjectures are that the technology of communication changed

with the introduction of television and that the rules of politics shifted with the imposition

of new redistricting rules in the 1960s. Also, it is claimed that interest groups caused the

growth of the incumbency advantage because interest groups give money to politics, that the

primary elections caused the incumbency advantage, and that the decline of political party

organizations contributed to the rise of personal politics.

What are some of the key variables at stake and how might we try to assess their im-

portance? How do we measure the incumbency advantage? How can we study the causes of
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the incumbency advantage? What data would help to address the causes of the incumbency

advantage?

These two topics in political science have been subject to intense statistical scrutiny.

They each began with observations of fact: declining ratio of votes cast to the number of

people in the voting aged population, and increasing reelection rates and vote margins of

House incumbents. In each, there has been robust debate over measurement questions; there

have been advances in the measurement and modeling of the variables in question; and, most

importantly, there has been a cumulation in knowledge.

Consider for example the study of turnout. Measuring the turnout rate has long been

problematic, as the baseline is di±cult to establish. Popkin and Rabinowitz have recently

argued that there has been relatively little decline in voting in the US because of the growth

of immigration. Establishing the causes of turnout has been somewhat easier. Verba and Nie

established the main sociological predictors of participation, especially age and education.

Brody, however, notes that these cannot cause declining participation. And Rosenstone and

Hansen ¯nd using data from the National Election Study from 1948 to 1992 that declining

turnout is attributable to declining party electoral activity. Also, comparative political

studies of turnout (such as Powell) show that electoral systems with PR have much higher

turnout. After 30 years of intensive study of the subject we know what are the strongest

predictors of participation and we have a new conjecture that political organizations may be

responsible for the decline in turnout. We don't yet understand the psychology of voters as

it relates to participation. Why do better educated people vote more?

The process of model building in these areas consists of the search for a simple set of

explanations for behavior. What is an adequate explanation? Presumably one that explains

a high fraction of the variation in behavior and that predicts behavior very well. In reaching

these standards it is clear that we need rules of scienti¯c evidence. How do we know when

we have made an improvement over past studies? What are appropriate and inappropriate

ways to analyze data? Can others replicate an analysis? Can they replicate a ¯nding using

identical methods? What would be the ideal study, and how would we implement it?
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These are all problems of estimation and inference, and ultimately design. In this section

of the course we will develop statistical models and methods by building up from simple

problems to more complicated ones.

1. General Concepts of Statistical Modeling

In this section, we develop the general concepts for statistical modeling using a simple

Bernoulli example. The goal is to develop the ideas of data summary, estimation, and

inference using a very simple problem. We will complicate this framework as we consider

more complex questions and study designs.

To give the subject some empirical °esh, consider the following problem. The Los Angeles

County Recorder and Registrar maintains the voter registration lists. The county has an

estimated 5.5 million eligible voters and 4.0 million names on the voter registration lists.

The voter registration lists may contain many duplicate registrations or obsolete registrations

because people move within the county or leave the county. Michael Alvarez and I conducted

a study designed to increase turnout. One part of this study involved an attempt to measure

obsolete registration listings, so that we could gauge what fraction of the population was

actually registered and what fraction of truly registered voters voted. We randomly selected

25 precincts out of 4,922. Within each of these precincts (of about 400 people each) we

randomly selected 100 people. We then mailed two pieces of ¯rst class mail to each of the

listings on the sample. On the envelope were explicit instructions to return the mailing if

the person to whom the letter was sent no longer resided at the address. Because the mail

was sent ¯rst class all undeliverable mail was returned. What fraction of registrations on

the LA County Registrar's list are obsolete?

There is a population fraction of obsolete listings on the registry; we denote this fraction

as p. Once we estimate p we can calculate the estimated fraction of registered voters who

voted. In the 2002 election, 1,784,320 people voted { 44.8 percent of the names on the

registry. To calculate the actual percent of registered people who voted, we need to adjust

the baseline number of names on the registry. The actual percent who voted is: 44:8=(1¡ p).
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What is p?

1.A. Data Summary

We begin by specifying how the data were generated. It is useful to distinguish between

two sorts of studies you will conduct and encounter { \designer data" and \found data."

Roughly the distinction is this. Many studies, such as surveys and lab experiments, are

carefully designed. The researchers choose the content, such as the questions, and the

sample sizes. These choices are made with speci¯c theoretical conjectures in mind, subject

to budget constraints. In many ways these are the ideal studies described in your statistics

books. I think the majority of studies consist of \found data." Researchers either analyze

data collected for some other reason or data that nature generated, such as the historical

record of elections, stock returns, or wars. With found data you get what you get. Found

data sounds like it has a bit of mutt and mongrel to it. It does, and this is most of what

we do in social sciences. The question is can we ¯gure out how to make the most of this

information and to avoid pitfalls of improper inference from data? Of course, the same is

true of designer data. When we have the opportunity to design a study, we want to design

the best study possible. I will usually treat data as if we had designed the study. The same

thinking goes into \found data."

When we write about research we must be very clear about the data we have at hand

{ what are its strengths and weaknesses, how does it improve on or supplement other em-

pirical studies? Most studies present the \Data and Methods" toward the beginning of the

presentation. It is good to present what is known about the data. For example, if a survey

is used, what is known about the validity and reliability of the questions.

Statistics texts use a generic description of a study. A researcher makes n independent

observations of a random variable X1; X2; X3; :::; Xn. Sometimes this is stated as \a sample

of n observations." Even for observational data, such as the incidence of wars over the last

100 years, data are a sample from the set of all possible occurences. We will typically assume

independence as the default. It is possible that there is some dependence within the data,
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and this is interesting to model.

What is the probability function associated with these n random variables? The joint

density of the data is called the likelihood. Let µ represent the parameters of the joint density.

The likelihood is

L(µ) = f(x1; x2; x3; :::xn; µ)

I use the semicolon to separate the parameter of f from the values of the random variables.

Two important common assumptions about the generation of data are that each observa-

tion is independent and that the density functions for of the each observations are identical.

We may, then, rewrite the likelihood as

L(µ) = f (x1; µ)f(x2; µ)f(x3; µ):::f (xn; µ) = ¦n
i=1f(xi; µ)

The likelihood function is often transformed using logarithms, which makes the function

linear and has an interpretation as an entropy function.

ln(L) =
nX

i=1
ln(f (xi; µ))

Consider a Bernoulli random variable, X = 1 with probability p and X = 0 with prob-

ability 1 ¡ p. For example, I conducted a survey for Los Angeles County to measure the

incidence of obsolete voter registrations. X = 1 means incorrect address. We randomly

chose 25 precincts, out of 4,922. Within each of these we chose 100 persons to receive a ¯rst

class mailing. The mailing was to be returned if the person was no longer at that address.

The probability function for any one observation is,

f(X ) = pX(1 ¡ p)1¡X :

Suppose we conduct a random sample survey without replacement from the population to

measure X. Then we have n observations with the joint density:

L(p) =
Ã
n
x

!
px(1¡ p)n¡x
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and

ln(L) = ln
Ã
n
x

!
+ xln(p) + (n¡ x)ln(1¡ p)

We may also summarize the data using the moments. Here we see a bit more clearly

what identicality entails. The mean and variance of the distributions of each of the random

variables are assumed to be the same (ie., from the same population): E(xi) = ¹ and

V (Xi) = ¾2. If each trial or draw from the population had its own mean and variance, these

moments would depend on the individual case i.

Continuing with the Bernoulli: E(X) = p and V (X) = p(1¡ p).

1.B. Estimation

The two approaches to data summary give us two di®erent approaches to estimation.

The method of moments involves using the sample statistics to estimate the mean. Once

we estimate the mean, we can also, in this problem, estimate the variance. There is only one

parameter.

The sample mean is
1
n

nX

i=1
xi =

k
n

The principle of maximum likelihood, due to R. A. Fisher, involves choosing a value of µ

that makes the probability of observing the data most likely. Speci¯cally, µ̂ is a guess of the

value of µ such that L(µ) is highest. This can be arrived at through the ¯rst derivative of

the log-likelihood function.
@ln(L)
@µ

jµ=µ̂ = 0

In the Bernoulli case,
@ln(L)
@p

=
k
p
¡ n¡ k

1 ¡ p
Setting this equation equal to 0 and solving for p̂ yields p̂ = k

n .
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In the Los Angeles county data, 12 percent of the 2500 observations were returned. This

is our estimate of the fraction of the registration roll that is no longer current.

1.C. Inference

Inference may be divided into two subjects. Statements of con¯dence in estimates and

hypothesis tests. There is a close link between the two which we will develop here.

i. Con¯dence Intervals

The simplest sort of inference we make is to construct con¯dence bounds. What is the

interval around p̂ such that we are 95 percent con¯dent that the interval covers the true

proportion. That is, let us calculate

P (jp̂ ¡ E(p̂)j > t
q
V (p̂)) · ®;

where ® is a suitably small probability of a deviation from the mean, typically .05.

To make this calculate we need to understand three features of the distribution of p̂ {

the mean, the variance, and the appropriate values of t. Of course, t is determined by the

distribution function of p̂.

The mean and variance of p̂ are straightforward. Assuming that the sample and the

measurement are not subject to biases, E(p̂) = E(( 1
n)
P
xi) = np=n = p. Also, assuming

indepedence of observations, V (p̂) = V ( 1
n )
P
xi) = np(1 ¡ p)=n2 = p(1¡p)

n . The square root

of the variance of the estimate is called the standard error.

To make the probability calculation we could calculate the widest possible bounds using

Chebychev's inequality. However, we can do a lot better. The statistic p̂ will follow the

normal distribution quite closely. Why? The estimate equals k=n. Since n is a number

and k is random, we know that the distribution of p̂ is determined by the distribution of

Sn =
P
xi = k.

The last result is a special case of the Central Limit Theorem. The Central Limit Theorem

states that a sum of random variables will be distributed normally with mean n¹ and variance

n¾2. Because most statistics are sums this means that almost all inference can be based on
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the Normal distribution, regardless of the underlying distribution of the data.

We may calculate the value of t from the Standard Normal probability table. To cover 95

percent of the distribution t = 1:96. That is, any observation more than 2 standard errors

from the true p is likely to occur only 5 percent of the time or less. To cover 90 percent of

the distribution requires t = 1:645.

Now, let us reconsider the LA County voter registration data. With a sample of 2500 peo-

ple, what is the likely range of p? We calculate this as .125 plus or minus
q

(:125)(:875)=2500.

This interval is approximately .11 to .14. We are 95 percent con¯dent that the fraction of

duplicate and obsolete registrations on the LA Country rolls is between 11 and 14 percent

of all names.

ii. Hypothesis Tests

An hypothesis test begins with a conjecture or theory of behavior. The conjecture predicts

that the data behave as if the underlying parameters of a function equalled some speci¯c

value. Common hypotheses are that two samples are identical or that there is no relationship

among a set of variables. Suppose, for example, that a colleague has made a guess about

the true error rate of .1 and used that in a research project. We can treate p0 = :1 as an

hypothesized value. Do the data support this assumption?

To construct the test, we must ¯rst consider what the possible outcomes of a test are.

We will use data to reach conclusions. Hopefully, we reach the correct conclusions from the

data { that the hypothesis is false when it is in fact false and that it is true when it is in

fact true. However, we might make two sorts of errors with the data. We might judge the

hypothesis to be false when it is not, or we might judge the hypothesis to be true when it is

false.

Once we collect data we want to use the data to draw an inference about the hypothesis.

Does the data cast doubt on the hypothesis or support it? Of course, we do not observe p0

directly. In stead, we collect data and compare that data to what we think the data would

look like were the hypothesis true.
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In making this comparison, we must imagine two kinds of counter factuals in hypothesis

testing. (1) What if p0 is right? How would the data look? (2) What if p0 is wrong and in

stead some other argue is right which predicts p equal some other value, say pA? How would

the data look under various alternative theories and values of p?

This framework for testing hypotheses creates a dichotomy between the hypothesis and

not the hypothesis. To construct a test of the hypothesis we think conditionally. If the

hypothesis is true, what are the chances of observing the data that we have observed? If

the hypothesis is untrue, what are the chances of observing the data? These possibilities are

summarized in the table.

Hypothesis Framework
Data Indicate Hypothesis is

Hypothesis is True False
True Correct False -
False False + Correct

We employ the data in making two sorts of probability calculations.

First, what is the probability of observing the data if the hypothesis is true? The hy-

pothesis in our simple example implies that the true proportion is p0 and that the variance

of X is p0(1¡ p0). Hence, we want to calculate:

P (jp̂¡ p0)j > z0

q
p0(1¡ p0)=njp = p0) · ®:

We can use the normal probability to make this calculation. Assuming ® = :05, Z0 = 1:964.

We, then, calculate whether the statistic

z =
p̂¡ p0q
p0(1¡p0)

n

exceeds 1.96. If the estimated p deviates su±ciently from p0, then we conclude that the data

do not support the hypothesis, because the data were unlikely to have occurred by chance

were the hypothesis true.

In the example of the LA County data,

P (jzj> z0) = P (jzj > :125 ¡ :1
q

:1:9
2500

) = P (jzj > 4:16) < P (jzj > 1:96) = :05
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So, the data do not support the working hypothesis of .1.

Notice that the hypothesis test that we implemented was extremely similar to the con¯-

dence interval calculation. Indeed, there is a duality between these ideas. An equivalent way

to conduct hypothesis tests if to ask whether the hypothesized value falls inside the 95 percent

con¯dence interval or not. One caveat is that the con¯dence interval calculation must use in-

formation about the variance as well as the mean under the null hypothesis. The appropriate

calculation of the con¯dence interval for the hypothesis test is p̂ + = ¡ 1:96
q
p0(1¡ p0)=n.

This is a subtle di®erence that usually doesn't matter in practice. It does re°ect the fact

that you are conditioning on a hypothesis and all that implies about the distribution of the

data.

We have ignored the other conditional, which is sometimes referred to as power. This

calculation involves entertaining alternative hypotheses and performing similar calculations

to the ones above. Power is useful in designing studies. Speci¯cally, power amounts to

asking how much ability does your study have to distinguish hypotheses. This depends on

the amount of information you have collected.

1.D. Design

Design of studies involves a large number of choices. What are the key variables? How

are they to be measured? How are the data to be collected (e.g., sample frames)? How many

cases must be observed? All of these issues are important in study design. If, for example,

we have a lot of measurement error, then the con¯dence intervals will be in°ated. If we have

bias then the con¯dence intervals will be wrong.

A basic design choice is sample size. In order to be able to distinguish among alternatives

how much data do I have to have? Rather than develop the idea of power fully, I will show

you a basic short cut.

Before doing a study, we must decide how much we desire to be able to discriminate across

possible values of the parameters. In a survey, for example, we might choose to estimate
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a proportion within, say, 3 percentage points. Call this level of con¯dence L. We wish,

then, to be able to make a statement such as \I'm 95 percent sure that the true value lies in

p̂+ =¡ L." We call L the margin of error; we choose a value for L.

Once we collect the data we know how we will analyze it. We will construct a 95 percent

con¯dence interval using the normal probability approximation and the sample estimates.

That is, p̂+ 1:96
q
p(1¡ p)=n.

A handy formula for computing sample sizes emerges when we compare these two simple

formulas. One formula expresses what we wish to be able to say; the other expresses what

we will be able to say. The ¯rst term in each formula is the same. To square are wishes with

our abilities, let L = 1:96
q
p(1 ¡ p)=n. Solve for n:

n =
µ1:96
L

¶2
p(1 ¡ p)

To calculate this value we need only make a guess about p. The most conservative guess is

p = :5. Let L = :03 { a commonly used margin of error for proportions. Hence,

n =
µ1:96
:03

¶2
(:5)(:5) = 1067

To have a relatively tight margin of error around a sample proportion, one needs to sample

at least 1000 people.

One general lesson about design from this calculation is that the design of studies consists

of \thinking backward." In designing a study, think about how the data are to be analyzed

and what hypothesis tests are to be conducted. This will guide decisions about sample size

and measurement.
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2. Central Limit Theorem

So far, we have developed our methods of inference and estimation case-by-case. A spe-

ci¯c problem has a particular distribution, which leads to a speci¯c estimator and inferential

distribution. A very powerful and elegant theorem uni¯es statistical methods, and that

is called the Central Limit Theorem. The Central Limit Theorem states that the sum of

random variables is itself a random variable and follows a normal distribution, with mean

n¹ and variance n¾2. Because most data consist of sums of random variables, the normal

distribution is a starting point for statistical modeling. And, any inferences we wish to draw

about means, regression lines, and other quantities of interest are made based on the normal

distribution.

To underscore the idea that normality approximates behavior well, consider two impor-

tant substantive examples.

Example 1. Stock Markets.

The graph shows the distribution of the daily rate of return on General Electric Stock

from 1975 to 1995. The rate of return is the percent change in the stock's value. The graph

shows the returns for a span of over 5000 days. General Electric's average rate of return in

the 20 years is .0008 { just under one-tenth of one-percent per day. The variance of this

stock (sometimes taken as a measure of risk) is .0002. Overlaid on the histogram of daily

rates of return is the normal curve with a mean of .0008 and variance .0002.

Two features of GE's rate of return deserve note. First, the distribution looks very normal

{ a symmetric bell shaped curve and a strong central tendency. Normality, then, may be a

very good approximation. Second, in the details, the data deviate from normality in some

interesting ways. There is a large negative outlier at -.17, corresponding to the crash of

1987, and a large positive outlier at .11, corresponding to a correction to the crash. The

data look too Kurtotic. The mean is .0008, the variance .0002, the skew is approximately

0, but the kurtosis (fourth moment from the mean) is 11. With the normal distribution one

expects a kurtosis around 3. This says that there are too many extreme deviations. If one

is thinking about markets generally, the intuitions from the normal may be quite good for
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an approximation. If one is trying to model day to day behavior and make money on large

volumes of trading, deviations from normality may be quite important.

Daily Rate of Return: GE, 1975-1995

Fr
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tio
n

Return
-.17 -.1 -.05 0 .05 .1

0

.19723

Example 2. Elections.

F.Y. Edgeworth observed in the Journal of the Royal Statistical Society in 1898 that the

distribution of the vote should be normal. He reasoned that the fraction of pro-Conservative

voters (in England) in the population is p and that a \sample" of n people vote. Hence, the

distribution of the vote in a constituency is Binomial, which is approximated well by the

normal distribution. Kendall and Stuart (British Journal of Sociology 1951) developed this

thinking into a model of the distribution of votes across districts, and the normal distribution

has since become the standard model for thinking about the variation in votes across districts

and over time.

The graph shows the distribution of the incumbent candidate's share of the two-party

vote in U.S. House elections from 1978 to 2000. The variable equals the Democrat's share of

the vote when the incumbent is a Democrat and the Republican's share of the vote when the

incumbent is a Republican. There are 3630 district-level election outcomes in the data. The
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average incumbent vote share is .66 and the standard deviation is .10. The normal curve

with mean .66 and variance .01 is overlaid on the histogram. As with the stock data the

distribution of votes across districts is approximated well by the normal distribution. The

curve deviates from normality somewhat, showing a slight positive skew.

Incumbent Vote Share in Contested House Elections, 1978 to 2000
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Incumbent Vote Share
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0

.05

.1

.15

Stocks and votes are examples of normality approximating behavior that is the sum of

many smaller actions or events. Statistics, such as the sample mean and sample variance, are

similarly sums of random variables. Hence, the normal distribution and the Central Limit

Theorem unify and simplify statistical analysis and inference.

We will derive a version of the Central Limit Theorem for the sum of n Bernoulli random

variables, though a general proof of the Central Limit Theorem is beyond the scope of this

course. Before presenting analytical results, we develop the intuition behind the Central

Limit Theorem using simulations.
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2. A. Simulations

The goal of these simulations is to demonstrate that the sum of random variables each

of which has very non-normal distribution tends to normality.

The simulations proceed in several steps. First, we generate a large number of draws

(100,000 in the ¯rst graph) from a uniform distribution to approximate the uniform density

function. I am using the uniform as an example of a non-normal distribution. Second, we

simulate many such uniform random variables. Each simulated distribution is the density

function of an independent random variable. Third, we consider progressively larger sums

of uniform densities to see how quickly the normal density emerges.

We will do two such simulations. The ¯rst corresponds to sums of uniform random

variables. One could do this problem analytically using convolutions, as in Bulmer Problem

3.5. The distribution of the sum of two uniforms is Triangular, etc. Here we will let the

computer do the math for us. The second corresponds to the distribution of statistics. If we

take n draws from the uniform as mimicking the behavior of sampling from a population, we

can study the distribution of repeated samples from the distribution. What is the distribution

of the mean? What is the distribution of the standard deviation? How does the sample size

a®ect the distribution?

Example 1. Sums of Uniform Random variables

The uniform distribution ranges from 0 to 1, has a mean of :5 and variance of 1
12. From the

properties of expected values we can make some basic conjectures about the distribution of

the sum of uniform random variables. The sum of two uniform distributions has a minimum

value of 0 and a maximum of 2; it will have a mean of 1 = 2(:5) and a variance of 2
12. The

sum of n uniform distributions has a minimum value of 0 and a maximum of n; it will have

a mean of n
2 and a variance of n

12.
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Histogram of 100000 Draws from U(0,1)
Used to Simulate the Theoretical Distribution
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Distribution of the Sum of 2 Uniform Random Variables
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Distribution of the Sum of 3 Uniform Random Variables
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Distribution of the Sum of 10 Uniform Random Variables
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The ¯rst graph shows the density of the random variable. The second graph shows the

result from the problem set that the sum of two uniform random variables has a triangular

density. Summing 10 uniforms produces a highly uniform density function.

To build your intuition about this pattern, convert the continuous problem into a discrete

problem. Divide the Uniform into two equal parts; let the ¯rst part have value 0 and the

second part have value 1. If we add two uniforms together we have 3 possible values { 0,

1 and 2. The probability associated with any particular combination of 0's and 1's from

variable 1 and variable 2 is .25. That is, the probability that we drew a value from the

interval of the ¯rst uniform associated with 0 is .5 and the probability that we drew a value

from the interval of the ¯rst uniform associated with 0 is .5. Hence, the probability of a 0; 0

is .25; the same is true for 0; 1, 1; 0, and 1; 1. There is one way to get a sum of 0; there are

2 ways to get a sum of 1; and there is one way to get a sum of 2. If we divided the uniform

interval into, say, 10 subintervals and gave those intervals value 0 to 9. There would be one

way to get a sum of 0, two ways to get a sum of 1, four ways to get a sum of 4, etc. We can

make the subintervals as small as desired and arrive at a continuous triangular distribution

for the sum of two random variables.

The mathematical structure behind this result is called a convolution. Let U = X + Y .

We want to derive the distribution H (u) = P (X + Y · u). We can derive this from the

conditional distribution of XjY and the distribution of X. Let F be the distribution of

XjY and G be the distribution of y. For any given u and y, we have P (X · u ¡ y) =

F (u ¡ yjY = y), so P (U · u) =
P
y F (u ¡ y)g(y) if y and x take discrete values and

P (U · u) =
R
F (u¡ y)g(y)dy.

Using the same reasoning we could add as many uniform random variables together as

we wished. The intuition for what is going on derives from the binomial coe±cients. What

drives the central limit theorem is the number of ways that one can get speci¯c values for

the sum, which is determined by the binomial coe±cients. Dividing the uniform into 2 parts

and adding n uniforms together will produce a binomial distribution, which is approximated

very well by the normal.
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Example 2. Distributions of Sample Statistics

Suppose that we took a sample of size n from the population. Regardless of the population

distribution, the distributions of the sample statistics will be approximately normal if n is

large enough. We demonstrate that here by considering two cases of random draws from the

uniform distribution. Expected value of any draw from the uniform distrution is :5 and the

variance :288 =
q

1=12. The sample statistics ¹x and ¾̂2 should, then, be close to .5 and .288.

How close depends on the sample size. We know from the theoretical results derived

earlier that the expected value of the sample average is the true mean and the variance

of the sample average is ¾2=n. I performed two simulations. One models a sample of 200

from a uniformly distributed random variable; the other models a sample of 1500 from a

uniformly distributed random variable. To simulate the distribution of the estimated mean

and variance I drew 2500 such samples and mapped the histogram of the means and variances

using the following STATA code:

set mem 300m

set obs 1500

forvalues i = 1(1)2500 f
gen u `i' = uniform()

g
forvalues i = 1(1)2500 f

quietly sum u `i'

disp r(mean) r(sd)

g
The distributions show two striking patterns. First, the distributions of the means and

variances are approximated very well by the normal distribution. Second, the distribution

of the sample means and variances is much tighter in the larger sample. This is an example

of the law of large numbers. From theory, we expect that the variance of the mean is 1=12
n ,

so the distribution of sampling means shrinks at rate 1=
p
n. The sample of 200 should have

standard error roughly 2.7 times larger than the sample of 1500.
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Simulated Distribution of Estimated Sample Means
Data Drawn from Uniform, Sample Sizes = 200

Fr
ac

tio
n

Sample Means
.44 .46 .48 .5 .52 .54 .56

0

.0992

Simulated Distribution of Estimated Sample Means
Data Drawn from Uniform, Sample Sizes = 1500

Fr
ac

tio
n

Sample Means
.44 .46 .48 .5 .52 .54 .56

0

.2456
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Simulated Distribution of Sample Estimates of Standard Deviations
Data Drawn from Uniform(0,1) , Sample Sizes = 200

Fr
ac

tio
n

Sample Standard Deviations
.25 .26 .27 .28 .29 .3 .31 .32 .33

0

.1512

Simulated Distribution of Sample Estimates of Standard Deviations
Data Drawn from Uniform(0,1) , Sample Sizes = 1500

Fr
ac

tio
n

Sample Standard Deviations
.25 .26 .27 .28 .29 .3 .31 .32 .33

0

.1884

Some statistics are not sums { for example, the median. Many statistics used in lieu of

sums (such as the median instead of the mean) rely on orderings of data. Inference with such

statistics usually depends on the population or sampling distribution of the random variable,
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complicating statistical inference. Sometimes medians and mean absolute deviations are

preferrable, as they guard against outliers. However, statistical analysis with statistics based

on orderings is much more cumbersome. The core of statistical methods relies on averaging

and the Central Limit Theorem simpli¯es statistics enormously.

2.B. Formal Proof

Here we derive a simple version of the Central Limit Theorem to strengthen your under-

standing of how the normal distribution approximates sums of random variables.

DeMoivre-Laplace Central Limit Theorem. Let Sn be the sum of n independent and

identical Bernoulli trials with probability p. For some numbers, z1 and z2, as n gets large

P (np¡ z1

q
np(1¡ p) · Sn · np+ z2

q
np(1 ¡ p)) ! ©(z2) ¡ ©(z1);

where ©(¢) is the cumulative distribution of the standard normal distribution.

The proof of this result proceeds in two steps. First, we consider the central part of the

distribution, which is the probability in the vicinity of the mean m = np. We will show that

the density at the mean is a0 = 1p
2¼np(1¡p)

. This result follows immediately from Stirling's

formula and is the \central limit." Second, we consider the density associated with speci¯c

deviations around the mean, indexed by k. We will show that the density ak at the point

k is approximately a0e
¡ 1

2np(1¡p) k
2
. This result follows from the approximation of the ratio of

two series of numbers.

Proof (due to Feller). The sum of n independent Bernoulli random variables follows the

Binomial distribution. De¯ne the mean of the of Sn as m = np. We will assume for simplicity

that n is such that m is an integer. If not, we would add to this quantity a fractional amount

± to make m the nearest integer value. Because this component is inessential to the proof

we will ignore this term.
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First, analyze the central term of the binomial, i.e. Sn = m. Let,

a0 =
Ã
n
m

!
pm(1¡ p)n¡m =

n!
m!(n¡m)!

pm(1¡ p)n¡m:

From Stirling's Formula we know that we can approximate this function as

a0 =
p

2¼nnne¡np
2¼mmme¡m

q
2¼(n¡m)(n¡m)n¡me¡(n¡m)

pm(1¡ p)n¡m

This reduces to

a0 =
1p
2¼

s
n

m(n¡m)
nmnn¡m

mm(n¡m)n¡m
pm(1¡ p)n¡m

Substituting the de¯nition of m = np, we ¯nd that

a0 =
1

p
2¼
q
np(1¡ p)

Second, consider deviations around the central term. Let x be a negative or positive

integer such that for all values of Sn,

ax =
Ã

n
m+ x

!
pm+x(1¡ p)n¡m¡x

This is the formula for the binomial for all values from 0 to n, where I have rewritten the

index value such that x ranges from ¡m to n¡m, instead of the usual indexing of k ranges

from 0 to n.

We wish to express the density at any point as a function of the deviation from the

central tendency. Notice that the binomial above has in it the expression for the density at

m, i.e., a0. Consider the ratio

ax
a0

=
n!

(m+x)!(n¡m¡x)!
n!

(m)!(n¡m)!

pm+x(1 ¡ p)n¡m¡x
pm(1 ¡ p)n¡m

This reduces to
ax
a0

=
(n¡m)(n¡m¡ 1):::(n¡m¡ x+ 1)px

(m + 1)(m+ 2):::(m+ x)(1¡ p)x
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We can rewrite this term as

ax
a0

=
(1¡ pt0)(1¡ pt1):::(1¡ ptx¡1)

(1 + (1¡ p)t0)(1 + (1 ¡ p)t1):::(1 + (1¡ p)tx¡1)
;

where tj = j+(1¡p)
np(1¡p) . [Note: Verify that this substitution works.]

Finally, we can analyze the ratio on the right-hand side of this expression using Taylor's

expansion for the natural logarithm.

log(1 + (1¡ p)tj) = (1¡ p)tj ¡
1
2

[(1 ¡ p)tj]2 +
1
3

[(1 ¡ p)tj]3 ¡
1
4

[(1 ¡ p)tj]4:::

and

log(
1

1 ¡ ptj)
= (p)tj +

1
2

(ptj)2 +
1
3

(ptj)3 +
1
4

(ptj)4:::

Adding these two terms we get:

log
Ã

1 + (1¡ p)tj
1 ¡ ptj

!
= tj ¡

1
2
t2j(1 ¡ 2p) +

1
3

(tj)3(p3 + (1¡ p)3):::

The terms above tj are small because they are multiplied by fractions p. Hence, log( 1+(1¡p)tj
1¡ptj ) ¼

tj or
1¡ ptj

1 + (1 ¡ p)tj
¼ e¡tj :

The last expression captures the deviation for just one term in the expansion for ak=a0.

Hence,

ak = a0e¡(t0+t1+:::tx¡1)

Because the sum of the ¯rst x numbers equals x(x+ 1)=2, we can use the de¯nition of tj to

rewrite the exponent as

t0 + t1 + :::tx¡1 =
0 + 1 + 2 + :::(x ¡ 1) + x(1¡ p)

np(1¡ p)
=
x(x ¡ 1)=2 + x(1¡ p)

np(1 ¡ p) ¼ x2=2
np(1¡ p)

Pulling all of the pieces together reveals that

ax = a0e
x2=2

np(1¡p) =
1p
2¼

1q
np(1 ¡ p)

e
x2=2

np(1¡p)
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, which is the formula for the normal density. This proves that for the sum of n independent

Bernoulli trials, any deviation x away from the mean of the sum, m = np, is approximated

by the normal distribution with variance np(1 ¡ p).

A more general proof of the Central Limit Theorem, for random variables that follow other

(almost any) distributions, is o®ered in Bulmer and relies on moment generating functions.

The power of the Central Limit Theorem is that for nearly any distribution, the behavior

that consists of sums of random variables (such as votes and stock markets) follows a normal

distribution and the distribution of averages and other sample statistics based on sums will

follow the normal distribution.

25



3. Means and Variances

The frequency of any random variable can be studied using the population (or theoretical)

mean and variance. The Bernoulli is a special case of this where the parameter of the

distribution function is p and E(X) = p and V (X) = p(1 ¡ p). Typically, we will have a

random variable that takes more complicated values and frequency functions. Our task is to

estimate the mean and variance from a sample of data and perform inference based on that

information.

Voting provides an instructive examples of the varieties of distributions that commonly

arise. We might wish to study the frequency of victory { the probability that candidates of

a certain type of party or from a particular social group win. Grofman, for instance, studies

the probability of reelection of incumbents. Political scientists also study the aggregate of the

election outcomes { the distribution of seats or division within Congress or the parliament.

Finally, since winning depends on the vote, we can often learn more about the forces a®ecting

elections by studying the behavior of the vote. What is the distribution of the vote across

districts? What is the variability of the vote within a typical district or a type of district

over time?

Means, variances, and histograms (density estimates) are staples in the study of elec-

tions. Some theories also lead us to focus on other quantities. Most important of these is

the median. An important theoretical tradition holds that parties and candidates contest

elections by announcing policies in order to appeal to the greatest fraction of the electorate.

In two party systems, competition for votes drives the parties to locate at the ideal policy of

the median voter (Hotelling 1927). Similarly, in the study of legislative politics the median

voter along a policy dimension is pivotal (Black 1968, Krehbiel 1998). In some problems,

then, we wish to study the median as a theoretical matter. In general, means will be more

e±cient and, thus, a preferred statistic.

To estimate the mean and variance of a distribution, we begin with a summary of the

data and proceed to choose values that satisfy one of our estimation criteria { such as the
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method of moments or maximum likelihood. I will present the maximum likelihood estimates

here.

Data consist of n observations from a Normal distribution with mean ¹ and variance

¾2. This is often written Xi ¼ N(¹; ¾2). Assuming the observations are independent, the

likelihood function for these data is:

L(¹; ¾2) = ¦n
i f (xi) = ¦n

i
1p

2¼¾2
e¡

1
2¾2 (xi¡¹)2 = (2¼¾2)¡n=2e¡

1
2¾2
Pn

i
(xi¡¹)2

And the log-likelihood function is

ln(L) =
¡n
2
ln(2¼)¡ n

2
ln(¾2) ¡ 1

2¾2

nX

i
(xi ¡ ¹)2

To derive the maximum likelihood estimators set the partial derivatives of ln(L) with

respect to ¹ and ¾2 equal to 0.

@ln(L)
@¹

= ¡ 1
2¾̂2

nX

i
(¡2)(xi ¡ ¹̂) = 0

@ln(L)
@¾2 =

¡n
2¾̂2 +

1
2(¾̂2)2

nX

i
(xi ¡ ¹̂)2 = 0

Solving the ¯rst equation reveals that

¹̂ = ¹x

Substituting this result into the second equation and solving yields:

¾̂2 =
1
n

nX

i
(xi ¡ ¹x)2

These are the sample averages and variances.

The properties of these estimators can be derived from their means and variances. We

know that if the sample is large the distributions of these two statistics will be approximated

by the Normal distribution.

We have already derived the mean and variance of the sample average.

E(¹x) = ¹
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V (¹x) =
¾2

n

When we must estimate ¾, the estimated variance of ¹x is ¾̂2

n

Similarly, we can estimate con¯dence intervals using the approach outlined above. Con-

sider the Incumbency data. From 3630 US House elections from 1978 to 2000, the average

incumbent vote margin is .66 with an estimated standard deviation is .10. Hence, the stan-

dard error of the mean incumbent vote margin is :0017 = :1=
p

3630. A 95 percent con¯dence

interval for the mean incumbent vote margin is [.657, .663].

As another example, consider politicians' ideologies. A group administered the National

Political Aptitude Test to candidates for Congress in 1996 and 1998. Ansolabehere, Snyder

and Stewart (2000) construct a preference score. The distribution of that score is shown for

incumbents. The mean score is .54 and the variance is .28 for the 376 incumbents in the

sample. A 95 percent con¯dence interval for the true mean is :54§1:96
q
:28=376 = :54§:053.

This is the con¯dence interval for an estimate of the center of the distribution. It is not a

necessarily a good prediction of what score an individual incumbent might receive. To do

that more information about the district and race is important.

By way of contrast, consider the distribution of the median, xr , where r is the 50th

percentile case. Generally, this estimator is biased for the mean, ¹: E[xr] = ¹ if f(x) is

symmetric. Assuming that it is biased, the sample median is usually ine±cient. If f (x) is

symmetrical around ¹, it can be shown that the lower bound of the variance of the median

is:

V ar(xr) ¸
1

4[f (¹)]2(n + 2)

To see that this usually exceeds the variance of the mean consider the uniform and normal

cases. When f(X) is uniform on the interval (0; 1), V (xr) = 1
4(n+2) . The variance of the

sample average from n observations is ¾2

n = 1
12n. In this example, the sample average is

approximately 3 times more e±cient than the sample median as an estimate of the mean of

the distribution. When f(X ) is normal with mean ¹ and variance ¾2, the lower bound for

V (xr) = 2¼¾2

4(n+2) . This is approximately 1.6 times larger than ¾2

n .
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As mentioned, there are some problems where we are interested in the median of the

distribution, rather than the mean. In the study of legislative committees the median voter

is pivotal. What is the median of the 25 U.S. House committee members? Roll call voting

studies average sets of votes and estimate the ideal point of each legislator on a continuum

of left-to-right policy preferences. Researchers would like to know where the median of

the committee lies. One way to estimate a 95 percent con¯dence interval for the median

is to use the normal approximation above. The resulting interval is approximately, xr §
1:96

q
1:57 ¾2

4(n+2) .

Consider the case of Incumbents' ideologies. The median score is .59, and the 95

percent con¯dence interval (using the normal approximation) is :59 § 1:96
q

2¼ ¾2

4(n+2) =

:59§ (1:96)(:034) = :59 § :067

The estimated variance also has a sampling distribution. We consider it's properties

brie°y here.

The estimate of the variance is biased, but consistent.

E [¾̂2] = E
"

1
n

nX

i=1
(xi ¡ ¹x)2

#

=
1
n
E
" nX

i=1
(xi ¡ ¹+¹¡ ¹x)2

#

Expanding the square and collecting terms yields

E[¾̂2] =
1
n
E
" nX

i=1
(xi ¡ ¹)2 ¡ 2(xi ¡ ¹)(¹x¡ ¹) + (¹¡ ¹x)2

#
=

1
n
X

i

h
¾2¡ 2E [(xi ¡ ¹)(¹x¡ ¹)] + E[(¹¡ ¹x

The middle term in the last part of the equation equals ¡2E[(xi¡¹)( 1
n
Pn
j=1(xj¡¹)] = ¡2 ¾

2

n ,

because Cov(Xi; Xj) = ¾2 if i = j and 0 otherwise. The last term in the equation above

equals 1
n¾

2, because this is just the variance of the mean. Hence,

E [¾̂2] =
1
n
X

i
[¾2 ¡ ¾2

n
] = ¾2 ¡ 1

n
¾2

This does not equal ¾2, so the estimtor is biased. It is consistent because the bias is of the

order 1=n.
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Bias in the variance is corrected with the appropriate \degrees of freedom." An alterna-

tive, unbiased estimator is usually employed in computations:

s2 =
1

n¡ 1

nX

i
(xi ¡ ¹x)2

The \degrees of freedom" refers to the fact that we have n pieces of information and we

\used" one of them to estimate the sample mean. If we had only one observation, there

would be no information about the variance.

Finally, note that the estimated variance follows a Â2 distribution with n ¡ 1 degrees

of freedom. The estimated variance is the sum on n¡ 1 independent normal variables. To

derive this distribution, assume that the data are approximately normal. Standardize each

observation and square it. This gives (Xi¡ ¹X)2
¾2 . Each of these is standard Â2 random variable.

Summing yields
P

i (Xi¡ ¹X)2

¾2 , also a Â2 distribution, but with n¡ 1 degrees of freedom. This

distribution has a mean of n¡ 1 and a variance of 2(n¡ 1).

Distributions of variances are very important in statistics, perhaps as important as distri-

butions of means. First, sometimes we wish to make tests about variances directly. Second,

in con¯dence intervals for means we must adjust for the distribution of the variance if we

had to estimate the variance in calculating the standard error. Third, hypothesis tests may

be thought of as the distance between our observations and our expectations. We can for-

malize this into test statistics that take the form of variances { squared distances between

hypothesized values and observed values.

Here I will not go into tests about variances, as they are su±ciently rare. Instead, let us

turn to the problem of con¯dence intervals when we must estimate the variance.

In smaller samples, we must worry about an additional issue { the fact that we estimated

¾2 in constructing the con¯dence interval. The con¯dence interval captures the probability

that a deviation from the mean lies within a set interval. That is, a 1¡® con¯dence interval

is

P (¡z®=2 ·
¹x ¡¹
¾¹x

· z®=2) = P (¹x¡ z®=2¾¹x · ¹ · ¹x ¡ z®=2¾¹x)

We can use the normal because ¹x (or some other estimator) is a sum of random variables.
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However, if ¾¹x is estimated, it too is a random variable and we must account for this fact.

The inner term in the con¯dence interval is now ¹x¡¹
¾̂=n . This function is a random variable

that is the ratio of a normally distributed variable to the square root of a Chi-squared dis-

tributed variable. Bulmer o®ers a derivation of the resulting distribution, which is Student's

T-distribution.1 The T is symmetric, like the normal, but slightly thicker in the tails. The

values of the T-distribution that cover 1¡® percent of the distribution depend on the degrees

of freedom of the estimated standard deviation. We will use the notation t®=2;n¡1 to denote

the relevant cut points. The con¯dence interval can now be expressed as:

P (¡t®=2;n¡1 ·
¹x¡ ¹
¾̂=n

· t®=2;n¡1) = P (¹x¡ t®=2;n¡1¾̂=n· ¹ · ¹x¡ t®=2;n¡1¾̂=n)

For ® = :05, when n = 10; t®=2;n¡1 = 2:23; n = 20; t®=2;n¡1 = 2:09; when n = 50; t®=2;n¡1 =

2:01; when n = 75; t®=2;n¡1 = 1:99; when n > 120; t®=2;n¡1 = 1:96:. Rule of thumb, use t > 2.

Wald generalized the idea of the t-statistic and t-test into an overall approach to sta-

tistical testing. Wald tests consist of calculating the distance between the observed data

and an hypothesized outcome, normalizing using the variability in the data implied by the

hypothesis. The general form of the Wald test is the square of a T-statistic. This ratio is

the square of a normal distribution divided by the square of another normal distribution.

This is the F-statistic. The F-statistic is the ratio of two \variances". In the numerator of

the Wald test is the mean squared error under a null hypothesis (the distance between the

estimated parameter and the hypothesized). In the denominator is the sampling variance,

which is the distance one would expect if the deviations were not systematic, and just due

to sampling variance.

A special case is Pearson's Chi-squared test for independence of two random variables

in a table. Assume there are two variables X and Y , which have C (for columns) and R

(for rows) values respectively. The table that characterizes the joint distribution has C £R
cells. The count in each cell is a binomial distribution, where the probability of being in

the cell is the probability of the pair (X = c; Y = r), i.e., Pc;r. The expected count in each
1The T-distribution was derived by Gossett, a quality control engineer and statistician employed by

Guiness. He was not allowed to publish under his own name and instead used the nom de plume Student.
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cell is nPc;r and the observed count is kc;r. For convenience suppose that we relabel the

indexes so that m = 1; 2; :::; CR. For example in a 2 by 2 table, we may relabel the indexes

so that (X = 0; Y = 0) is j = 1, (X = 1; Y = 0) is j = 2, (X = 0; Y = 1) is j = 3, and

(X = 1; Y = 1) is j = 4. [It really doesn't matter how we relabel the index so long as we

are consistent.]

Consider the null hypothesis that the two variables are independent. The expected

count in each cell equals the number of cases total times the probability of observing an

observation in that cell. Under the null hypothesis of indepedence, P (X = c; Y = r) =

P (X = c)P (Y = r). Hence, if the null hypothesis is true, the expected cell counts are

Ej = nP (X = c)P (Y = r). The squared deviation of each cell count from its expected count

follows a Â2-distribution. We must normalize by each cells variance, which is approximately

equal to nP (X = c)P (Y = r) = Ej. Pearson's Chi-squared statistic, then, is
X

j

(kj ¡ Ej)2

Ej
:

As the sum of squared normals this follows a Â2-distribution. The numerator is the deviation

of the observed from the expected and the denominator is approximately the variace expected

if the null hypothesis is true.

How many independent variables are in the sum? That is, how many degrees of freedom

are there? Answer: there are (R ¡ 1)(C ¡ 1) degrees of freedom. We estimate all of the

row and column (marginal) probabilities in order to estimate the expected outcome under

the null hypothesis. Within any row, then, if we know any C ¡ 1 numbers, then we know

the Cth, because the rows sum to 1. Similarly within any column, if we know any R ¡ 1

numbers, then we know the Rth, because the rows sum to 1. In the entire table, then, there

are (R ¡ 1)(C ¡ 1) \free" numbers. Once we ¯ll in values for these, the remaining numbers

are determined. Hence the term \degrees of freedom."

Example. Lake, \Powerful Paci¯sts," APSR (1993). Are Democracies More Likely than

Autocracies to Win Wars? Lake classi¯ed all wars in the 20th Century according to the type

of regime involved and whether the regime was on the winning side.
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Nature of Regime
Success in War Democratic Autocratic

Win 38 32 70
Lose 9 42 51

47 74 121

Independence implies that P (D;W ) = 70
121

47
121 = :225, P (A;W ) = 70

121
74
121 = :354, P (D;L) =

51
121

47
121 = :164, and P (A;L) = 51

121
74
121 = :259. The expected counts in the cells are kD;W =

27:2, kA;W = 42:8, kD;L = 19:8, and kA;L = 31:2. Pearson's Chi-squared statistic measures

whether the observed counts were unlikely to have occured just by chance. This is calculated

as:

X2 =
(27:2¡ 38)2

27:2
+

(42:8¡ 32)2

42:8
+

(19:8¡ 9)2

19:8
+

(31:2 ¡ 42)2

31:2
= 16:673:

This follows a Â2
1. The probability of observing deviations at least this large from the

expected values is .00004 if the null hypothesis is true.

Why 1 degree of freedom? Given the marginal probabilities, once we observe one joint

value, the other values are determined.

The probability of observing a deviation of the data from the expected value is called

a p-value. STATA will calculate the value of the cumulative probability function for you

(without a table). For the Chi-Squared test we can use the function chi2(n, x). The

command disp 1 - chi2(1, 16.673) returns the value .00004, which is the probability of

observing a value of the Â2
1 distribution at least as large as 16.673.
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4. E®ects and Di®erences of Means

Most often in the social sciences we study the relationship between variables. Speci¯cally,

we wish to know what the e®ect of one variable is on another.

Consider two examples.

Example 1. Regime Type and Success in War Lake's analysis of outcomes of wars shows

that the type of regime is related to success in war. The analysis so far says nothing about

how successful. A simple idea is to measure the di®erence between the probabilities of success

of Democratic regimes and of Autocratic regimes. The win rate of Democratic regimes in

his study is .81 (=38/47); the win rate of Autocratic regimes is .43 (=32/74). There is a 38

percentage point di®erence between Democrat's and Autocrat's win rates. Also, Democrtic

regimes are twice as likely to be on the winning side as Autocratic regimes.

Example 2. Incumbency and Election Results We have seen that for incubments this

distribution is remarkably normal. Were we to take a di®erent perspective on these data a

rather uneven picture would emerge. The ¯gure shows the distribution of the Democratic

share of the vote. The distribution of the Democratic share of the vote across districts has an

uneven and at times bimodal distribution. Mayhew (1971) noticed this e®ect and attributed

it to the rising vote margins of US House incuments. Erikson (1971) identi¯ed and estimated

the incumbency e®ect as the di®erential in vote between those holding o±ce and those not

holding o±ce. Over the last 20 years, the average division of the vote when there is an

incumbent is .66 in favor of the incumbent's party; the average vote margin when there is

no incumbent is .54 in favor of the party that previously held the seat. The interpretation

commonly given is that there is a 12 percentage point incumbency advantage in votes { this

is what we expect an incumbent to receive above and beyond what his or her party would

win in the election in that constituency.

An e®ect of one variable on another is de¯ned to be the di®erence in the conditional

means across values of the conditioning variable. Suppose X takes two values, 1 and 0. The

e®ect of X on Y is written ± = E [Y jX = 1]¡ E[Y jX = 0]. This is the di®erence between
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the means of two conditional distributions, i.e., ± = ¹1 ¡ ¹0.

The e®ect is itself a quantity we would like to estimate and about which we would like

to draw statistical inferences. How large is the di®erence in means? If we were to change

the value of X, say through a public policy or experiment, how much change in Y do we

expect? When we conduct a study and observe a di®erence between two subsamples (or

subpopulations), how likely is it that it arose simply by chance?

4.A. Estimation

As a practical matter it will be convenient to use notation for random variables that

clearly distinguishes the e®ect from chance variation in our random variables. Speci¯cally,

any single random variable can be written as the mean of the random variable plus an error

term with mean 0 and variance ¾2: Y = ¹+ ².

Using this notation, we may summarize the conditional distributions and e®ects as fol-

lows. Suppose X takes two values, indexed j = 0; 1. The conditional distribution of Y given

X can be represented as:

(Y jX = j) = ¹j + ²j;

where ²j has mean 0 and variance ¾2
j . An alternative approach is to use the density function,

f(Y jX = j).

We can estimate the e®ect using the methods developed for a single mean. The theoretical

e®ect is ± = E [Y jX = 1] ¡ E [Y jX = 0], a parameter we don't observe directly. Data

for this problem consist of two samples. One sample is drawn from the distribution of Y

for the subpopulation of cases among whom X = 1, and a second sample is drawn from

the distribution of Y for the subpopulation among whom X = 0. In many studies, the

conditioning is not speci¯ed in the design of the data. Instead, we observe data from the

joint distribution f (Y;X) and then condition on values of X . For both situations, the

di®erence of means is referred to as the \two-sample" problem.

The estimated e®ect of X on Y is the di®erence between the means of the two subsamples.

Let n1 be the number of observations for which X = and let n0 be the number of observations
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for which X = 0. Let i index observations within groups j . Then the estimated e®ect is:

d = ¹y1 ¡ ¹y0 =
1
n1

X

i2(X=1)
Xi;j ¡

1
n0

X

i2(X=0)
Xi;j

The variance of each subsample is estimated using the familiar formula applied to the sub-

sample:

s2
j =

1
nj ¡ 1

X

i2(X=1)
(xi;j ¡ ¹xj)2

What are the properties of the estimated e®ect, d?

1. It is unbiased.

E [d] = E [ ¹y1 ¡ ¹y0] = E[ ¹y1]¡ E [ ¹y0] = ¹1 ¡ ¹0 = ±

2. The variance of the estimated e®ect depend on the nature of the sampling. Generally,

we will encounter problems in which the two subsamples are independent.

V [d] = V [ ¹y1 ¡ ¹y0] = V [ ¹y1] + V [ ¹y0] + 2Cov[ ¹y1; ¹y0] =
¾2

1

n1
+
¾2

0

n0

When we estimate the sample variance we calculate the estimated V [d] as s2
1
n1

+ s20
n0

.

Importantly, the standard error of the estimated e®ect is bounded by the size of the

smaller group. If we begin with a study in which n1 is 100 and n0 is 100, then the standard

error will be of the order 1=
p

100. If we increase the sample size of n1 to, say, 1000, the

standard error of the estimated e®ect is still of the order 1=
p

100. Speci¯cally, as n1 ! 1,

V [d]! ¾2
0

100.

In order to make e±ciency gains from larger sample sizes, the optimal approach is to

increase the sample sizes in both groups at about the same rate (depending on the relative

variances).

In some problems, the samples are not independent and a somewhat di®erent variance

result holds. For example, some studies employ paired samples. Each observation in a

sample is paired with another observation on the basis of a common characteristic that we

think a®ects Y . One member of the pair is assigned X = 0 and the other is assigned X = 1.
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The sample, then, consists of n pairs. The estimated e®ect is the average di®erence between

each pair:

d =
1
n

nX

i=1
yi;1 ¡ yi;0;

which is identical to the di®ernce between the averages of the two subsamples. The gain to

pairing comes in the variance.

V [d] =
1
n2

nX

i=1
V [yi;1¡yi;0] =

1
n2 (

X

i
V [yi; 1]+

X

i
V [yi;0]¡ 2

X

i
Cov[yi;1; yi;0] =

¾2
1

n1
+
¾2

0

n0
¡2

¾i
n
;

where ¾i is the covariance between 1; 0 within i. There is a gain in e±ciency from pairing (a

design e®ect) due to the covariance within pairs. To calculate the estimated variance of the

e®ect we need only calculate the average sum of squared deviations of each paired di®erence

from the average paired di®erence.

As an example, consider the \sophomore surge" as an estimate of the incumbency advan-

tage. Erikson examines the change in the vote within congressional districts. Speci¯cally,

he looks at all races where the incumbent in time 1 was not the incumbent in time 0.

3. The sampling distribution of d is normal because it is the sum of random variables.

That is

d ¼ N(¹1 +¹2;
¾2

1

n1
+
¾2

0

n0
)

4.B. Inference about E®ects.

Inference about an e®ect proceeds along the same lines as inference about a single mean.

We may construct con¯dence intervals to measure our uncertainty about the estimated pop-

ulation parameter. We may also test whether the observed data deviate for a speci¯ed (or

hypothesized) value.

Using the last property, we can draw inferences about the e®ect ±.

A 95 percent con¯dence interval can be constructed using Chebychev's inequality.

P (jd ¡ ±j > k
q
V [d]) < :05
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From the Central Limit Theorem, we know that the distribution of d will follow a normal

distribution if nj is large. Therefore, k = z®=2 = 1:96. Hence, a 95 percent con¯dence

interval for the estimated e®ect is:

d § 1:96

s
¾2

1

n1
+
¾2

0

n0

The law of large numbers applies to this interval, so long as both sample sizes grow as n

grows. Speci¯cally, as n1 and n0 get large, d approaches ±.

As with a single mean, when we have to estimate V [d] we may need to use the T-

distribution to correct for our uncertainty about the estimated variances. Now the choice

of the T-distribution depends on the size of the smaller group. If it is below 100, the T is

appropriate.

Hypothesis testing for a di®erence of means parallels the treatment for a single mean.

We begin with a statement about a speci¯c value ± = ±0. The most common hypothesis for

estimated e®ects is ± = 0; hence the term \null" hypothesis for no e®ect.

If the hypothesis is true, then there is only a ® percent chance of observing a standard

deviate

Zd =
jd¡ ±0jq
V [d]

that is more than z®=2. Researchers occasionally calculate the probability of observing a

normal deviate at least as large as Zd; this is called the p-value. Alternatively, one may

assess whether the hypothesized value lies inside the 95 percent con¯dence interval implied

by the hypothesis.

Example. We now can reanalyze Lake's data as a di®erence of means (proportions). The

e®ect of interest is the di®erence in success rates of Democratic regimes and Autocratic

regimes. The estimated e®ect is d = :81 ¡ :43 = :38. The variance of this estimate can be

calculated by using the formula for independent samples and the formula for the variance of

a Bernoulli: v [d] = (:81)(:19)
47 + (:43)(:57)

74 = :006.
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A 95 percent con¯dence interval for the true e®ect is :38 § 1:96
p
:006 = :38 § :15, or

(:53; :23). This is a very wide con¯dence interval.

Lake is interested in the hypothesis that there is no e®ect of regime type on success in

war. If true, this hypothesis implies that both sorts of countries have the same proability of

success, which would equal the overall rate of success in the sample (= 70=121 = :579). If

this value is true, then the V [d] = (:579)(1 ¡ :579)( 1
47 + 1

74 ) = :008. The con¯dence interval

implied by the null hypothesis is :38§1:96
p
:008 = :38§ :18, or (:56; :20). The hypothesized

value lies outside this interval so we can reject the null hypothesis. To calculate the p-

value we compute the probability of a normal deviate at least as large as :38¡0p
:008 = 4:13:

P (jZj> 4:13) < :001.

4.C. Experimental Logic and Design

We use the term e®ect to refer to a di®erence of conditional means. This is not a causal

e®ect, however, and usually we are interested in measuring the extent to which one variable

causes another. A simple de¯nition of causality is that A causes B if in the presence of A,

B occurs, and in the absence of A, B does not occur, all other things held constant (ceteris

paribus). Causes may not be as absolute as this statement suggests. For example, A might

cause a reduction in B, if B takes a continuum of values, and we would like to measure the

extent to which A causes B. The important aspect about the de¯nition is that all else is held

constant.

Thinking statistically, we can state the de¯nition in terms of conditional distributions.

Suppose that there are individuals i and times t, and that a treatment variable X takes two

values 1 and 0 and an outcome variable Y takes a continuum of values. The de¯nition of

causality is the di®erence in the conditional distributions when X = 1 and when X = 0. We

say that the extent that X causes Y is captured by the di®erence in the random variables

(Yi;tjXi;t = 1) ¡ (Yi;tjXi;t = 0). And the causal e®ect of X on Y is the exent to which the

systematic component of the distribution di®ers when X changes:

± = E [(Yi;tjXi;t = 1)¡ (Yi;tjXi;t = 0)]
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Immediately, there is a fundamental problem with the notion of causality. We cannot

observe X = 1 and X = 0 for the same individual at the same moment of time. Consider

the following problem. You would like to know whether a campaign commercial makes

someone more likely to engage in some activity, such as to buy a product or to vote for a

candidate. You cannot both show the commercial to someone and not show the commercial

to someone. Another example, you might wish to know whether a medicine reduces the

severity of headaches. You could do an experiment on yourself. But, you would have to take

the medicine and not take the medicine when a given headache occurs in order to follow the

de¯nition of causality literally.

Commonly we observe the behavior of people who watch television commercials and

of people who do not. Or, worse still the behavior of people who recall that they saw a

commercial and of people who do not recall that they saw a commercial. We might also

observe the behavior of people who take headache tablets and people who don't. Such

studies are called observational.

It is di±cult to infer causes from simple observational studies. Why? People who engage

in a behavior X may be of a certain type of person, and we may simple measure di®erences

in Y across types of people, rather than the e®ect of X on Y . For example, people who

are very attentive to politics are more likely to recall that they saw a political commercial.

More attentive people are also more likely to vote. The e®ect of recall of an ad on Y re°ects

attentiveness, not the e®ectiveness of commercials.

Such an e®ect is a spurious association. The ad does not really cause the behavior. The

underlying attentiveness of the person causes the behavior.

Is there a way out of this conundrum?

Claim. A controlled and randomized experiment is su±cient to guarantee an

unbiased estimate of the causal e®ect.

What do we mean by control and randomization?
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A controlled experiment is one in which the researcher determines which units (e.g.,

individual people at speci¯c times) are assigned which values of X. For example, we could

do an experiment in which we show some people a commercial and other people are shown

no commercial. The group shown a commercial is called the Treatment Group, and the

group not shown a commercial is shown a Control Group. The latter is the baseline behavior

that would occur without the commercial and against which the e®ect of the treatment is

measured. Importantly, the researcher determines who sees what { that is the essence of

experimental control.

Experimental control is an excellent start, and it usually gets us \most of the way there."

But not all of the way to an unbiased estimate. How are people to be assigned to the

treatment and control? We could arbitrarily assign some people to watch a commercial and

others to not watch a commercial. For example, we could recruit people to participate in

our experiment at a shopping mall. The ¯rst person watches the commercial; the second

does not; the third does; the fourth does not; etc.

Arbitrarily assigning people to groups might unwittingly introduce spurious associations.

For example, suppose that couples come to the experiment and the man always arrives ¯rst

followed by the woman. If we follow the approach above, then, one group will consist entirely

of men and the other will consist entirely of women. The results of the experiment may,

then, re°ect di®erences in gender, which was introduced in the experiment by our assignment

method, rather than the actual e®ect of the treatment.

Random Assignment, in addition to experimental control, guarantees an unbiased esti-

mate of the true e®ect. Randomization involves using a device such as a coin toss or random

number generator to assign individuals to experimental groups (i.e., treatment or control).

In the case of the advertising experiment, we can introduce randomized assignment many

ways. Here is one approach. The night before the experiment is to be done, the researcher

takes the list of people scheduled to participate (say 100). The researcher then draws 100

random numbers from the ¯rst 100 numbers without replacement. The ¯rst number drawn

is assigned to the ¯rst person; the second number to the second person; and so forth. Each
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person is assigned to the control group if the number drawn for them is odd and the treat-

ment group if the number drawn for them is even. This approach randomly divides the list

of 100 subjects into treatment and control groups.

How do we know random assignment and experimental control ¯x the spurious correlation

problem? The sense in which randomized, controlled experiments work is that the Expected

Outcome of the experiment equals the Theoretical E®ect (±). Let us generalize the de¯nition

of the experimental e®ect into the Average Causal E®ect:

A:C:E: =
1
n

nX

i;t
E [(Yi;tjXi;t = 1)¡ (Yi;tjXi;t = 0)]

This treatment is due to Rubin (Journal of Ed. Stats. 1974).

I will give you a simple demonstration of this powerful idea.

For concreteness, consider the following problem. I wish to test whether route A or route

B produces the faster commute home. There is one individual (me) and there are two time

periods (today and tomorrow). I will commit to following one of two regimes. I can follow

route A today and route B tomorrow, or I can follow route B today and route A tomorrow.

This is the sample space of my experiment, and I control the assignment (though, regrettably,

not the other drivers on the road). I could choose to follow A or B today on a whim. That

would be arbitrary, and I might subconsciously follow a pattern that would bias my little

experiment. For example, it looks cloudy, I'll take route A. But in the back of my mind I

may have chosen route A because I know that there is more glare on route A on sunny days

and thus a slower commute. This will obviously a®ect the outcome of the experiment.

Randomization involves tossing a coin to today. If the coin is heads, I follow Regime

I { take A today and B tomorrow. If the coin is tails, I follow Regime II { take B today

and A tomorrow. This slight change in my design is quite powerful. It means I will have

an unbiased experiment. On each day I follow the chosen route and observe the dependent

variable, the time of my commute.

The outcome of the experiment is de¯ned as the di®erence in the dependent variable

between group A and group B. That is the random variable is Y (Xt = A) ¡ Y (Xs = B),
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where Y is the time and Xj the route followed on day j , either t or s. Let j = 1 mean today

and j = 2 mean tomorrow. Then the random variable has two realizations (or values):

Y (X1 = A) ¡ Y (X2 = B) if the coin toss is heads.

Y (X2 = A) ¡ Y (X1 = B) if the coin toss is tails.

The probability of observing the ¯rst realization is p = :5 and the probability of the

second realization is (1 ¡ p) = :5. The expected value of the random variable that is the

outcome of the experiment is:

E [Y (Xt = A) ¡Y (Xs = B)] =
1
2

[Y (X1 = A)¡ Y (X2 = B)] +
1
2

[Y (X2 = A) ¡ Y (X1 = B)]

=
1
2

[Y (X1 = A)¡ Y (X1 = A) + Y (X2 = A)¡ Y (X2 = B)]

The last expression is the Average Causal E®ect. This shows that a randomized controlled

experiment is unbiased: the expected outcome of the experiment equals the Average Causal

E®ect.

A second concern is not bias, but e±ciency. This experiment is much too small and

subject to idiosyncratic events that occur in tra±c on days 1 and 2. It is really based on just

one observation and is highly variable. A much larger sample is desired to get a more precise

estimator. How large a sample size we need depends on how wide of an interval around the

true e®ect we wish to estimate.

There is increasing use of experiments in political science and social sciences generally.

And, even when we cannot perform a controlled experiment, the logic of experimentation

provides a model for how we improve estimates through the careful design of studies. A

good example is the literature on incumbency advantages.

Application: Incumbency Advantage. Let's consider 3 di®erent study designs for estimating

the incumbency advantage.

Design 1. Take the di®erence between the mean vote in all seats where there is an

incumbent and the mean vote in all seats where there is no incumbent. In all 491 open

seats from 1978 to 2000, the average Democratic vote margin was .518 with a standard error
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of .131. Among the 2013 cases where a Democratic incumbent ran, the mean Democratic

share of the vote was .662, with a standard deviation of .108. Among the 1512 cases where a

Republican incumbent ran, the mean Democratic share of the vote was .350, with a standard

deviation of .088. The incumbency e®ect is :144§ :016 among Democrats and :168 § :016

among Republicans.

What might bias this estimate? Di®erent sets of districts are involved, and places that

are more likely to be open are more likely to be close, exaggerating the e®ect.

Design 2. Take the di®erence between the mean vote in seats that were open by previously

controlled by a party and the mean vote in seats where an incumbent of that party runs

for reelection. There are a large number of cases where districts change, so we lose these

observations. In Democratic held seats, 1279 Democratic incumbents had average vote of

.656 with a standard deviation of .105 and 134 open seat races had average Democratic

vote of .550 with a standard deviation of .133. In Republican held seats, 1030 Republican

incumbents had average Democratic vote share of .345 with a standard deviation of .09 and

128 open seat races had average Democratic vote of .437 with a standard deviation of .08.

The incumbency e®ect was :106 § :028 among the Democratic seats and :092§ :019 among

the Republican seats.

What might bias this estimate? Di®erent people are running in di®erent districts. If

better candidates survive electoral challenges then Incumbents re°ect a di®erent pool of

people than Open Seat candidates.

Design 3: Sophomore Surge. Take the di®erence in the vote between time 1 and time 2 for

all incumbents who won in open seats in the previous election. Among the 155 cases where

this is true for Democratic incumbents, the average increase in the Democratic incumbent's

vote share was .04 with a standard deviation of .08. Among the 161 cases where this is true

for Republican incumbents, the average increase in the Republican incumbent's vote share

was .06 with a standard deviation of .09. Overall, the average increase in vote share was .05

with a standard deviation of .085. The con¯dence interval for the incumbency e®ect using

this method is :05§ :009.
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5. Regression

Regression provides a general model for analyzing the conditional mean, E[Y jX = x], of

the joint distribution f(y; x). Regression generalizes the concept of an e®ect to any type of

variable X, not just binary. Regression also allows us to hold other factors constant in the

analysis of the data (rather than the design), thereby lessening concerns about bias, and it

provides a framework with which to use models to make predictions. As a result, regression

is the foundation for most statistical research in the social sciences.

In the previous section, we de¯ned an e®ect as the di®erence in the mean of Y across

values of X, where X is binary. If X takes many values, the concept can be expanded to the

change in the mean of Y given a unit change in X. That is, Y is a function of X and the

e®ect of X on Y is ± = dE[Y jX=x]
dx . Integrating with respect to X yields E[Y jX = x] = °+±x.

This is a linear representation of the e®ect of X on Y . We can generalize this further, making

the e®ect itself variable, say ±(X).

Consider three examples. In an experiment relating advertising to behavior (consumption

or voting), researchers wish to know how individuals respond to repeated advertisements.

What is the expected e®ect of 1 ad, of 2, 3, 4, etc.? This relationship might be aggregated

into a campaign production function to measure the returns to campaigning in terms of sales

or votes. Suppose we performed an experiment in which we divided the participants into 5

groups and showed each group a number of ads { zero ads, one ad, two ads, three ads, and

four ads. We then measured the attitudes and behaviors of the groups. A simple summary

model of the e®ects of the ads on the participants is the linear model E [Y jX = x] = ° + ±x,

where x ranges from 0 to 4. The expected di®erence between someone who saw 4 ads and

someone who saw no ads is ±4. One might further analyze each level separately to map out

a response function. That is, one might measure the e®ect of an additional ad, given that

the person has already seen 1, or seen 2, or seen 3, etc. Gerber and Green (APSR 2002)

describe one such experiment. They ¯nd that the marginal returns to direct mail political

advertisements are sharply decreasing. The di®erence in participation between those who

receive 1 mailer and 2 mailers is larger than the di®erence in participation between those
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who receive 2 mailers and 3 mailers, and so on. After 6 mailers the marginal return is 0.

A second example is observational. What is the value representation? Many legislatures

have unequal represenation (such as the US Senate), and before the court's eradicated such

malapportionment in the mid-1960s, state legislatures commonly had inequalities in which

some seats would have 20 times as many people (and thus 1/20th the representation) as

other seats. Ansolabehere, Gerber, and Stewart (2002) use court-ordered redistricting to

estimate how an increase in representation a®ects the share of funds an area receives from

the state. They found that doubling a county's representation increased that county's share

of state revenues 20 percent.

A third example derives the exact functional form from theory. Ansolabehere, Snyder,

Strauss and Ting (2002) consider the division of cabinet portfolios under theories of e±cient

bargaining. From existing theories they derive the condition that any party asked to join

a coalition government can expect a share of posts proportional to its share of \voting

weights": Yj = cXj if party j is a coalition partner. And, the party chosen to form a coalition

government receives its proportionate share of the posts plus any surplus: Yf = (1¡Pj cXj)+

cXf for the party that forms the coalition. Assuming that minimum winning coalitions form,

they show that the expected division of cabinet posts is: Yi = Fi(1¡W+1
2W +cXi)+(1¡Fi)cXi,

where Fi is a binary variable indicating which party forms the coalition, W is the total voting

weight of the parties, and c is the implied price of buying a partner with 1 vote. The function

simpli¯es to a linear function: Yi = Fi(1¡ W+1
2W )+ cXi. This is a regression of each coalition

members share of posts on their share of parliamentary \voting weight" plus a binary variable

for the formateur. The regression estimates the price of a coalition partner, predicted by

theories to range from 1 to 2, and the advantage of being formateur, predicted by various

theoretical models to range from 1/2 to 0. Analyses of parliamentary coalition governments

from 1945 to 2002 show that the coe±cient c in this model is slightly larger than 1 and

the coe±cient on the variable indicating whether a party formed the government is .25,

indicating an advantage to forming the government.

The second two examples involve observational analyses, which is the dominant form of
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study in social sciences. The experimental example is in many ways ideal, because we can

be more con¯dent that the experiment caused any e®ect, as opposed to some other factors.

The leap from experimental thinking to observational thinking is di±cult. In fact, sta-

tistical methods for studying observational data emerged nearly a century after the same

methods for experimental work. Importantly, the concepts and methods for studying obser-

vational data turned out to be the same as the experimental methods.

Physical experiments gave rise to the concept of regression. At the end of the 18th

Cetury, Gauss and Laplace developed a simple elegant model to measure the underlying

relationship between two variables as re°ected in in experimental data. The idea was this.

The relationship between X and Y is ¯xed but the parameters are not exactly known.

The experimenter chooses the level of a variable, X, and then observed the outcome Y .

Y is observed with some measurement error. In Gausses case astronomical observations

were made and atomosphere introduced measurement error. Gauss and Laplace separately

developed a method for extracting the underlying parameters from the observed data called

least squares. Given ¯xed values of X, the problem was one of minimizing measurement

error.

Sir Robert Galton, an English statistician in the late 19th Century, observed that the

same statistical procedure applied to the measurement of two variables in social data, even

when the data were not experimentally derived. Galton studied, among other phenomena,

human genetics. He observed that the height of o®spring was on average a bit lower than

the mid-point of the height of the parents when the parents were above average. Also,

the height of o®spring was on average a bit higher than the mid-point of the height of the

parents when the parents were below average. This was termed regression to the mean. He

also observed that the relationship between parents' heights and o®springs' heights followed

a jointly normal distribution.

f (x1; x2) =
1

2¼¾1¾2
p

1¡ ½2e
¡ 1

2(1¡½2)
((x1¡¹1

¾1
)2+(x2¡¹2

¾2
)2+2½(x1¡¹1

¾1
)(x2¡¹2

¾2
))
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The conditional mean of this distribution, it was further observed, is a linear function:

E [X2jX1 = x1] = ® + ¯x1;

where ® = ¹2 ¡ ¾1;2
¾2

1
¹1 and ¯ = ¾1;2

¾2
1

. Using sample quantities to estimate these parameters

yields exactly the same formula as Laplace and Gauss derived.2

How are the data most e±ciently used to estimate the coe±cients? How can we use

estimated values to draw inferences or make predictions? Given the information a study can

contain, we also seek to ¯nd ways to improve designs so as to get the most information out

of the fewest cases (e±ciency) and to guard against spurious relationships (bias).

5.A. Model

The regression model can be arrived at from many di®erent approaches. As a start,

consider the model of means presented in the last section: Yi;j = ¹j + ²i;j, where i indexes

individual units and j indexes groups or values of X. Let ¹j be a linear function of values of

X: ¹j = ®+¯xi. Then, Yi = ®+¯xi +²i. Sometimes this is called a generalize linear model

in which there is a \linking function" de¯ning the mean plus an error term. This is way of

thinking about regression tends to originate with experimentalists. We determine the values

of X and perform an experiment in order to ¯gure out how the mean of Y depends on values

of X . The left over term is a random error component that is unrelated to X because of the

structure of the experiment.

A more subtle idea is that we seek to estimate the conditional mean and conditional

variance of the distribution of Y jX. Linearity is a good starting approximation for the

function describing these means. Sometimes we might encounter data that are jointly normal,

and thus, the function describing the conditional means is linear in x. Sometimes we can

derive from a theoretical model a formula that relates empirically observable variables.

The basic linear regression model is a set of assumptions describing data:
2That is, substitute ¹xj for ¹j , sj for ¾j , and s1;2 for ¾1;2.
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(1) A Linear Relationship de¯nes how Y depends on X

Yi = ®+ ¯Xi + ²i

Or, in the case of many di®erent independent variables, X1, X2, etc.:

Yi = ® + ¯1X1;i + ¯2X2;i + ²i

(2) E[²i] = 0

(3) Independence of X and ² (no omitted variables): E[Xi²i] = 0.

(4) No measurement error in X.

(5) \Spherical Distribution of Errors": (a) Constant error variance (homoskedasticity):

E [²2i ] = ¾2
² , and (b) No autocorrelation: E [²i²j] = 0 if i6= j.

(6) ² follows a normal distribution.

Assumption (3) is critical. When this assumption fails, biases in estimates emerge, and

are sometimes so severe that the results are non-sense. The most common problem is that

the error in the regression model captures all factors not in the model, some of which may be

systematic but unmeasured. Some of those unmeasured variables may be correlated with the

included variables, X1, X2, etc. This assumption is extremely di±cult to test and validate.

It is, therefore, the assumption that requires the greatest thought and care in the design of

any study.3

A carefully performed experiment estimates the true e®ect without bias. Randomization

and control help ensure that assumption (3) is satis¯ed. Randomization and control (if

there are no problems with compliance) mean that the level of X that a unit receives is not

correlated with anything else.

Most of what we learn, however, we learn from observation. And, in observational studies,

assumption (3) is less surely met. The reasonability of estimated parameters usually indicate
3Other possible problems emerge because of aggregation or simultaneous relationships between dependent

and independent variables.
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whether there is a severe violation of assumption (3). For example, in the ¯eld of criminology,

it is well known that there is a positive correlation between crime rates and number of police

on the streets. A regression of violent crime rates on number of police in major U.S. cities

from 1975 to 1995 has an estimated regression line of Crime = :08 + :13P olice. More police

do not cause more crime.

There are likely two problems that violate Assumption (3). First, there are many omitted

factors, such as the age distribution, income rates, drug use rate, and so forth. These must

be held constant in order to estimate correctly the e®ect of increasing the number of police

on the crime rate. Second, the relationship between crime and police may be simultaneous.

A city experiencing a crime wave, whatever the cause, is likely to increase the number of

police on the street. Many sociologists, political scientists, and economists have tried to

tackle this problem. For a survey of research through the 1980s see Wilson Thinking About

Crime. For recent innovative work, see Levitt (1999).

Assumptions (1) and (2) concern the functional form. I will develop the framework using

linear models. A more complicated function may be required, though. For example, in

Gerber and Green's advertising experiments, the functional form exhibits decreasing returns

and is clearly not linear. Ideally, theoretical analyses, such as a game theoretic model or

a conjecture from psychology, will guide us to the choice of functional form. The wrong

functional form can be biased or ine±cient, or both.

Fortunately, we can usually tell from the data whether the linear model makes sense,

at least as an approximation. Four sorts of non-linear models are common { step functions

(dummy variables), interactions among variables, transformation into the logarithmic scale,

and quadratics. These are readily accomodated within the linear structure.

Dummy Variables. A step function, such as a di®erence of means or a shift in intercepts,

can be modeled with the inclusion of a binary variable that equals 1 if the logical statement

de¯ning the shift is true and 0 otherwise. In regression analyses, variables that indicate

such shifts or steps are called Dummy Variables. An example is the indicator of which party

forms the government, Fi, in the coalition government analyses above.
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Note: The di®erence of means consists of the regression of Y on X where X is binary.

Interactions. Interactions arise most commonly in psychological and behavioral models.

As an example of an interaction, consider the psychology of advertising. An advertisement

may be more e®ective among people who hold beliefs consistent with the message of the ad

or who care most intensely about the issue or product in the ad. Among such people the

e®ect of an additional ad might be quite strong (and possibly linear). Among all people not

inclined to believe the ad or who don't care about the message, the e®ect is small.

Multiplicative Models and Logarithms. Logarithmic transformations are perhaps the most

common. The logarithmic model makes a multiplicative model linear, and thus easier to

analyze. Speci¯cally, suppose that the true relationship among the variables of interest is as

follows:

Yi = AX¯
i ui

Taking (natural) logarithms of both sides of this equation yields the following linear model:

log(Yi) = log(A) + ¯log(Xi) + log(ui) = ®+ ¯log(Xi) + ²i

This is a linear model, except that that scale of X and Y have been changed. The new scale

is in terms of percentages. That is, each unit increase of log(Y ) represents a one percent

increase in Y. We can see this from the derivative: dlog(X)
dX = 1

X . If X = 1, a unit increase is

a 100 percent increase in log(X); if X = 10, a unit increase in X is a 10 percent increase in

log(X); and so forth.

The slope coe±cient in the multiplicative model transformed into the linear scale is

interpreted as an elasticity. Specifcially, for a one percent increase in X there is a ¯ percent

increase in Y .

Polynomials. Other sorts of transformations are also common, especially quadratics.

Polynomials, such as quadratics, are used to approximate a general function. For example,

in the beginning of the course we used quadratics to approximate the returns to schooling

and on the job experience. As we learned earlier, higher ordered polynomial terms can be

included in the regression to capture an unknown curved function.
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Assumption (4) holds that the measurement of X is made accurately. While X is a

random variable, we must also take care not to introduce additional variation due to the

instrument used to measureX. If we have a noisy measuring device, we will introduce random

measurement error which will tend to bias estimates toward 0. In a bivariate regression that

bias will surely arise; in a multivariate analysis the bias may have any sign.

In some problems, measurement error is a necessary evil. Proxy variables are often

used in social sciences to measure a concept with an index or some variable that captures

the concept. Proxies involve measurement error and thus produce bias in estimates. One

interesting methodological question is when is a proxy variable worse than no variable at

all? The concensus seems to be that it is always best to include a proxy when possible.

Assumptions (5) and (6) are less essential to the model. The do a®ect the e±ciency with

which we estimate the parameters of the data. Violations of these assumptions are readily

¯xed.

How we generalize the model and how we deal with violations of these assumptions are

the challenges for the next course in this sequence. For the remainder of this course we will

focus on the analysis of the model, assuming that the assumptions hold.

5.B. Estimation

5.B.1. Estimation Methods

There are three parameters to estimate in the simple (bivariate) regression model { the

slope (¯), the intercept (®), and the error variance ¾2
² . We may stipulate many di®erent

estimation concepts. We can maximize the likelihood function. We can ¯nd the values that

satisfy the method of moments. We could minimize mean squared error. All lead to the

same answers, interestingly.

Estimation within the regression framework began with the idea of minimizing the error

variance. This is the notion of Least Squares. It is the idea Laplace and Gauss developed.

We often refer to regression as Ordinary Least Squares regression.
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De¯ne the sum of squared errors as follows:

S =
nX

i=1
²2i =

nX

i=1
(yi ¡ (®+ ¯xi))2

This function is a bowl-shaped parabola in ® and ¯.

To ¯nd the values of ® and ¯ that minimize this function, take the ¯rst derivatives with

respect to each and set these equations equal to 0. The resulting equations are called the

normal equations.
@S
@®

=
nX

i=1
¡2(yi ¡ (®̂ + ^̄xi)) = 0

@S
@¯

=
nX

i=1
¡2xi(yi ¡ (®̂+ ^̄xi)) = 0

Solving the ¯rst equation for ®̂ yields:

®̂ = ¹y ¡ ^̄¹x:

Substituting this result into the second normal equation yields:

^̄ =
Pn
i=1(xi ¡ ¹x)(yi ¡ ¹y)
Pn
i=1(xi ¡ ¹x)2

Consider also the method of moments. There are two moments in the model: E [²] = 0

and E[X²] = 0, assumptions (2) and (3), respectively. De¯ne the observed error (also called

the residual) as ei = yi ¡ a ¡ bxi. Assumption (2) implies
P
i ei = 0 and assumption (3)

implies
P
i xiei = 0. These are the empirical moments that correspond to the theoretical

momemts. Now let us ¯nd the values of a and b that satisfy these restrictions.

The ¯rst empirical moment is
P
i ei =

P
i(yi¡a¡bxi) = 0. Solving for a yields a = ¹y¡b¹x.

The second empirical moment is
P
i eixi = 0. We can subtract ¹e from ei and ¹x from xi

and the equation still holds. This yields
P
i eixi =

P
i(yi¡ a¡ bxi¡ (¹y ¡ a ¡ b¹x))(xi ¡ ¹x) =

P
i(yi ¡ ¹y ¡ b(xi ¡ ¹x))(xi ¡ ¹x) = 0. Collecting terms and solving the equation for b:

b =
Pn
i=1(xi ¡ ¹x)(yi ¡ ¹y)
Pn
i=1(xi ¡ ¹x)2

The method of moments, then, yields the same results as least squares.
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The ¯nal moment to estimate is ¾2
² . It can be shown that E[

Pn
i e

2
i ] = (n¡ k)¾2, where n

is the number of observations and k is the number of parameters in the regression formula

estimated (in the simple case k=2). Hence, s2
e = 1

n¡k
Pn
i=1 e2

i .

One may further verify that maximum likelihood with normally distributed errors yields

these estimators as well, with the caveat that the estimator of the error variance does not

adjust for the degrees of freedom.

5.B.2. Properties of Estimates

The estimators a, b, and s2
e are functions of random variables because they depend on y .

As such, they are themselves random variables. From sample to sample the values observed

will vary. What are the distributions of the estimators of the regression parameters.

(1) The estimators are unbiased. E [a] = ® and E[b] = ¯.

I will show this for b. We must consider the expected value of b conditional on the values

of X. For convenience I will drop the conditional.

E [b] = E[
Pn
i=1(xi ¡ ¹x)(yi ¡ ¹y)
Pn
i=1(xi ¡ ¹x)2 ] = E[

Pn
i=1(xi ¡ ¹x)(® + ¯xi + ²i ¡ ® ¡ ¯¹x ¡ ¹²)

Pn
i=1(xi ¡ ¹x)2 ]

= E [
Pn
i=1(xi ¡ ¹x)(¯(xi ¡ ¹x) + (²i ¡ ¹²)

Pn
i=1(xi ¡ ¹x)2 ] = E[¯ +

Pn
i=1(xi ¡ ¹x)(²i ¡ ¹²)
Pn
i=1(xi ¡ ¹x)2 ] = ¯;

assuming that ² and X are uncorrelated (assumption(3)). Note: This also means that if the

two are correlated then the estimated regression slope may be biased.

(2) The variances of the estimators are:

V [b] =
¾2
²P

i(xi ¡ ¹x)2

V [a] = ¾2
² [

1
n

+
¹x2

P
i(xi ¡ ¹x)2 ]

In deriving these results, we use the \homoskedasticity" assumption and the \no auto-

correlation" assumption.

V [b] = E[(b ¡ ¯)2] = E[(¯ +
Pn
i=1(xi ¡ ¹x)(²i ¡ ¹²)
Pn
i=1(xi ¡ ¹x)2 ¡ ¯)2] =

Pn
i=1(xi ¡ ¹x)2E(²i ¡ ¹²)2
Pn
i=1(xi ¡ ¹x)4
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=
¾2
²Pn

i=1(xi ¡ ¹x)2

V [a] = E[(¹y¡ b¹x¡ ®)2] = E [(® + ¯¹x+ ¹²¡ b¹x ¡ ®)2]

= E[(¹x(¯ ¡ b) + ¹²)2] = E[(¹x2(¯ ¡ b)2] + E[¹²)2]

=
¹x2¾2

²P
i(xi ¡ ¹x)2 +

¾2
²

n

(3) The covariance of the estimated parameters is Cov(a; b) = ¡¹x¾2
²P

i
(xi¡¹x)2 .

(4) The parameter estimates follow a joint normal distribution (from the Central Limit

Theorem).

Simulations help us further develop our intuitions about the distribution of the estimators.

I simulated the distribution of the parameter estimates for a sample size of n = 200 and a

regression yi = ¡:3 + :8xi + ²i. The values of epsilon were drawn from independent normal

random variables with mean 0 and variance 1. Two di®erent simulations were performed for

the values of X. In each the distribution is assumed normal. In the ¯rst, the mean of X is

2 and standard deviation 1. In the second, the mean of X is 2 and the standard deviation

is 3.

I used the following STATA code.

set mem 300m

set obs 200

forvalues i = 1(1)2500 f
gen x `i' = invnorm(uniform())

gen y `i' = -.3 + .8*x `i' + invnorm(uniform())

quietly regress y `i' x `i'

matrix list e(b)

g
This returned 2500 values from the distribution of b and a for a regression with sample size

of n = 200.
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Simulated values of a had an average of -.302 and a standard deviation of .160. Simulated

values of b had an average of .801 and a standard deviation of .073. From the formulas, we

expect means values of a and b of -.3 and .8, respectively, and standard deviations (standard

errors) of .158 and .071.

A further feature of the estimator that we have derived deserves emphasis. The least

squares/method of moments estimator has the smallest variance of all possible linear and

unbiased estimators. That is, any other way of adding the data together to form estimates

of a, b, and ¾2
² that is unbiased will have higher variance. Least squares uses the data most

e±ciently. This result is general and is called the Gauss-Markov Theorem

Consider the following alternative estimator. Choose the smallest value of X, xs and the

largest value of X , xL. Observe the corresponding values of Y , ys and YL. We can estimate

the slope as

~b =
yL ¡ ys
xL ¡ xs

This esimator is unbiased. Of note, it is not unbiased if we choose the highest value

of Y and the lowest value of Y and observe the corresponding X's. To show unbiasedness

evaluate the expected value of bjX.

E[bjX] = E
· yL ¡ ys
xL ¡ xs

jX = x
¸

= E
"
® + ¯xL + ²L ¡ ®¡ ¯xs¡ ²s

xL ¡ xs
jX = x

#

= E
"
¯(xL ¡xs) + (²L ¡ ²s)

xL ¡xs
jX = x

#
= ¯ + E

· ²L ¡ ²s
xL ¡ xs

jX = x
¸

The last term in the equation is 0 because E[²jX] = 0. (This is the assumtion violated by

conditioning on Y .)

Now we may consider the variance of ~b

E [(~b¡ ¯)2] = E[(¯ +
²L ¡ ²s
xL ¡ xs

¡ ¯)2jX = x] =
2¾2

²

(xL ¡ xs)2

which is larger than ¾2
²P

i
(xi¡¹x)2 .
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5.C. Inference

Inference about regression models follows the framework developed for di®erences of

means. Subtleties arise when we consider more than one estimated coe±cient, or when we

compare regression models. We begin with con¯dence intervals and tests concerning a single

coe±cient.

1. Inference about Coe±cients

In developing the basic tools of inferences, we will consider two examples: the relationship

between seats and votes in a two-party system and the relationship between a party's share

of cabinet poses and its share of voting weights in coalition governments. We have discussed

the latter example already.

A ¯rst sort of inference is a con¯dence interval for a coe±cient. The estimates of a and b

and their distributions allows us to construct con¯dence intervals readily. Since the coe±cient

estimates are sums of random variables (sums of ²'s), we know that the distribution of a and

b tends to the normal distribution, regardless of the underlying distribution of the data.

Consider again the estimated relationship between a party's share of cabinet poses and

its share of voting weights in coalition governments. Holding constand whether a party is

formateur or not, the estimated e®ect of voting weights is 1.16 with a standard error of .07. A

95 percent con¯dence interval for this coe±cient is 1:16§(1:96)(:07) = [1:30; 1:02]. Similarly,

a 95 percent con¯dence interval the estimated coe±cient on formateur is :145§ (1:96)(:03).

2. Inference about Models

Theoretical models and arguments have concrete predictions. If the argument is right,

regression coe±cients ought to equal speci¯c values.

Competing models of coalition formation carry speci¯c predictions. Gamson's law holds

that a is not distinguishable from 0 and b, the coe±cient on voting weight, is not distin-
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guishable from 2; the Baron Ferejohn model holds that a = 0, b = 1 and c, the coe±cient on

the dummy variable for Formateur, is not distinguishable from .5.

Another example is the "Cube Law." At the beginning of the 20th Century, statisticians

observing English elections posited a \law of cubic proportions" describes the rate at which

votes are translated into seats. It is this:

S
1¡ S =

µ V
1¡ V

¶3

James March developed a regression model wihtin which to nest this model. Taking logarithm

of both sides of the cube law yields a linear relationship: log(S=1 ¡ S) = 3log(V=1 ¡ V ).

De¯ne Y = log(S=1¡ S) and X = log(V=1¡ V ). The cube law predicts that the estimated

coe±cients of the regression Y = ® + ¯X should not be distinguishable from a = 0 and

b = 3. The coe±cient a has since been renamed the \bias." If a6= 0, then when two parties

split the vote evenly, one party receives signi¯cantly more than half the seats.

All hypothesis tests take the form of the probability that the coe±cients of interest

deviate from an hypothesized value.

For a single coe±cient, we construct the standarized value of the coe±cient if the hy-

pothesis is true:

t =
b¡ b0
SE(b)

;

where b0 is the hypothesized value and SE(b) is the standard error of b. If the number of

cases is relatively small (say less than 100), then the statistic follows the t-distribution with

n¡ k degrees of freedom, wher k is the number of variables in the model. If the number of

cases is relatively large, the normal distribution approximates the t-distribution well and we

can calculate the probability of observing a deviation at least as large as t with reference to

the standard normal.

For example, we may ask whether c di®ers from 0 in the coalition government analyses,

that is whether there is a signi¯cant formateur advantage. The test statistic is (:145¡0)
xxx = :xxx.

The probability of observing a standardized deviation of c from 0 that is at least this large

is smaller than .01, so we reject the null hypothesis at the 99 percent level. Note this is the
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same as asking whether the hypothesized value lies inside the con¯dence interval.

When hypotheses involve multiple coe±cients, one cannot test each coe±cient in isola-

tion. The estimated coe±cients a; b; c; ::: are jointly normally distributed, but they are not

independent. Hence, the probability of observing a given deviation in one coe±cient and

a deviation in another coe±cient does not generally equal the product of the coe±cients.

We could construct a joint con¯dence interval, which would consist of the ellipse de¯ned by

f(a; b) = :05. Hypothesized values of a and b inside this ellipse are supported by the data,

but values outside the data are not supported.

An alternative approach is to consider the loss of ¯t that results by maintaining the

hypothesis. When the hypothesis is maintained or imposed on the data, the amount of

variation in y not explained by X is
P
i u2

i . When the hypothesis is not maintained, the

amount of variation in y not explained by X is
P
i e2
i . Let J be the number of parameters

constrained by the hypothesis and k the total number of parameters. The percentage change

in ¯t from the imposition of the hypothesis is:

F =
(
P
i u2

i ¡
P
i e2
i )=JP

i e2
i=(n¡ k)

If there is a signi¯cant loss of ¯t from imposing the hypothesis then the amount of unex-

plained error will be large.

This formula, it turns out, is identical to calculating the sum of squared deviations of

each parameter estimate from the value implied by the hypothesis divided by the variance

of that sum of squared errors. The square root of this formula is a general form of the

t-distribution.

To determine whether the observed loss of ¯t could have arisen by chance, we calculate

the probability of observing a value of the random variable de¯ned by the F-statistic that is

at least as large as the observed value of the statistic. If that probability is very small then

the observed loss of ¯t is unlikely to have occured by chance.

The F-statistic follows an F-distribution. An F-distribution, as mentioned earlier in the

course, is the distribution that arises from the ratio of squared normals, that is the ratio
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of Â2 distributed random variables. Because the sum of Â2 random variables is also Â2

we can construct many F-distributions depending on the number of Â2 in the numerator

and the number in the denominator. In the case of the statisic above, there are sum of J

independent squared normals in the numerator and n¡ k independent squared normals in

the denominator. (Why only J independent normals in the denominator? Because we use

n¡ k ¡J when we maintain the hypothesis and n¡ k when we don't. Taking the di®erence

between the sum of squared errors leaves J pieces of information free.)

In STATA, we can implement this test by using the test command following a regression

as follows

reg y x1 x2

test x1=k1

test x2=k2, accum

test cons=a0, accum

The test command performs an F-test for each variable, one at a time. We consider multiple

restrictions on coe±cients using accum.

The Cube law implies both that b = 3 and a = 0. To test this hypothesis for England

(where it originates), we estimate the regression model proposed by March. Data consist of

the Conservative party's share of the seats and share of the votes in elections from 1927 to

2002. The estimated intercept and slope are -.04 and 2.65, with standard errors .06 and .23,

respectively. Imposing the cube law on the data implies that ui = log( Si
1¡Si)¡3log( Vi

1¡Vi ). The

sum of these residuals squared and divided by 2 is the numerator of the F-statistics. Without

imposing the values of a and b, we estimate the regression model and use the mean-squared

error of the residuals for the denominator. The F-statistic is 1.81 for this problem, which

follows and F-distributoin with 2 and 15 degrees of freedom. The probability of observing

such a deviation were the hypothesis true is .20, so the cube law is supported in the data.

Note: The test of a single parameter is somewhat misleading. The test of whether the

slope equals 3 is t = 2:65¡3:00
:234 = 2:82, which is unlikely to have arisen by chance. But that is
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a partial test.

Consider Gamson's law and the Baron-Ferejohn bargaining model. Gamson's law implies

that in a regression of shares of posts on shares of weight plus a formateur the coe±cient on

the dummy variable for the formateur should equal 0 and the coe±cient on voting weights

should equal 2. The Baron-Ferejohn model implies that the coe±cient on the dummy variable

for the formateur should equal .25, the coe±cient on the share of voting weight should equal

1, and the intercept should equal 0.

We can test each of these models separately. The F-test for the appropriateness of

Gamson's law is 273.4, with 2 and 244 degrees of freedom. The probability of observing a

deviation at least this large is smaller than .001. This means that the observed deviations

from expectations are quite unlikely to have occured by chance if that theoretical model

captured bargaining well. The F-statistic testing the Baron-Ferejohn model is 8.73, which

is also unlikely to have arise by chance if the model is exactly right.

Neither model ¯ts the data su±ciently well that we would readily accept it as the right

model of parliamentary bargaining. The sign¯cant formateur advantage deviates from Gam-

son's law, but it is not large enough to indicate that the Baron-Ferejohn model is right.

What can we conclude from tests showing both models are wrong?

3. Inference about Predictions

A ¯nal sort of inference of importance concerns predicted values. Policy analysis com-

monly uses data analyses to generate predictions. For example, if the economy grows at a

certain rate, then tax revenues will grow by that amount and government revenues will either

fall short of or exceed the amount budgeted. Political scientists often make forecasts about

elections based on surveys or models in which the aggregate vote is predicted by economic

growth and international con°ict. One rule of thumb from such models is that if growth is

3 percent or more, the president will be reelected.
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Let x0 be a speci¯c value of interest (such as 3 percent growth). Suppose we have

estimated a regression model ŷ = a+bx. The point prediction is ŷ0 = a+ bx0. The predicted

value is y0 = a + bx0 + e0, the point prediction plus the residual.

How much uncertainty is associated with predictions? The uncertainty about predictions

is of two sorts. First, we are uncertain because of the random variation inherent in a single

event, such as a speci¯c election. Second, we are uncertain about the regression line. This

uncertainty is the variance of the predicted value:

V (y0) = V (a+ bx0 + e0) = V (a) + V (b) ¡ 2Cov(a; b) + V (e0)

= ¾2
² (

1
n

+
¹x2

P
i(xi ¡ ¹x)2 ) +

¾2
²P

i(xi ¡ ¹x)2 ¡ 2
¾2
² ¹xx0P

i(xi ¡ ¹x)2 + ¾2
²

= ¾2
²[1 +

1
n

+
(x0 ¡ ¹x)2
P
i(xi ¡ ¹x)2]

A couple of aspects of the prediction error are noteworthy. First, it never shrinks to zero as

the sample size becomes large. The lower bound is ¾2
² . This is because prediction ultimately

concerns a single event. Second, the farther the value of x0 from the mean of ¹x, the worse

the prediction. An \out of sample" prediction is based on a value of X farther away from

the mean than the smallest or largest value of X in a sample. Such predictions are extremely

uncertain.

We may use the V (y0) to form a con¯dence interval for predictions in the same way as

we form con¯dence intervals for means: ŷ0 § 1:96
q
V (y0).

For example, a simple model of the last 13 presidential elections uses income growth to

predict presidential election votes. The regression has an intercept of 48.4 and a coe±cient

on income of 2.41. The average growth rate is 1.6, the estimated error variance is 19.26, and

the sum of squared deviations of X is 72.62. If income growth is 3 percent this year, Bush

is predicted to win 55.3 percent of the vote. But the con¯dence interval on this prediction

is 9.06.

A more sophisticated model includes an indicator for incumbency and an indicator for

war, as well as income. The estimated regression is Vote = 47:3 + 2:08 Income +5:74
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Incumbent ¡6:04 War. Assuming continued military engagements in Irag and Afghanistan,

growth of 1.6 percent implies Ŷ2004 = 50:8, growth of 2 percent implies Ŷ2004 = 51:6, and

growth of 3 percent implies Ŷ2004 = 53:7.

It is easy to have a false sense of con¯dence about these predictions because they are

hard numbers. Average growth and this is a very titght race. Adding war and incumbency

improves the model, but the precision is poor for a predictive model. The MSE is 4, so the

standard error of the predicted values are approximately 4.2.
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5.D. Design

I would like to highlight four lessons to close the semester.

First, think about social phenomena as random variables. It is rare that we have truly

deterministic theoretical models, and the state of knowledge in political science and other

social sciences is such that there is a great deal of variation that we do not understand. As

a conceit we treat such variation as random. It is our hope to capture important (large)

systematic variation.

Second, the outcomes of studies are themselves random variables, depending on what

cases were studied and how the researcher measured the variables of interest. It is through

the accumulation of knowledge across many studies that we learn.

Third, think multi-dimensionally. It is easy to seize on a single cause for phenomena.

That re°ects a basic commitment to parsimony. However, most social phenomena are pre-

dicted by many factors and, it is thought, have multiple causes. Observational studies that

do not capture the important causal factors are bound to be biased. The evolution of

understanding and knowledge occurs when ideas are subjected to analyses that introduce

successive improvements in design to capture these .

Fourth, think backward. Good research design begins with conjectures { possible ¯ndings

and the conclusions one might draw from them. Statistics provides you with a very useful

framework for thinking through design problems. We must guard against false negatives and

false positives in analyzing data relevant to a given conjecture. Doing so involves sampling

from the population in ways that give you the greatest e±ciency. That usually involves a

somewhat large number of observations, but not always. Choosing very di®erent values of

the independent variable in an experiment or observational study yields the highest precision

(and allows for smaller samples).
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