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1. The Basic Regression Model

Multivariate regression is the primary statical tool for applied statistics in the social
sciences. Consider two applications.

Example 1. Capital Asset Pricing Model. In value an investment we assess the expected
return and the risk associated with that investment. The risk is how much the stock may
deviate from the expected return if we cash out the investment at some future date. The
expected return is the average return. How risky is a stock? There are two views. First,
there is the \overall" risk, which is measured as the variance of the stock. Second, there is
the risk associated with the stock itself, and not with the greater market. It may be possible
to reduce the overall risk by holding a diverse portfolio so we need to know how risky is a
stock relative to the market.

A simple model of this is captured in the regression of the rate of return to a given ¯rm's
stock on the rate of return of the market. Let Yt be the percentage change in the daily stock
price of a ¯rm; let Xt be the percentage change in the market (e.g., Dow Jones Industrial
Average); let ²t represent a random error term; and let t index date.

Yt = ® + ¯Xt + ²t

The coe±cient ¯ measures the risk relative to the market. If ¯ > 1 the ¯rm price is more
volatile than the market; if ¯ < 1 the ¯rm price is less volatile than the market. The ¯gure
shows the CAPM regression for two arbitrarily chosen Fortune 500 ¯rms { WalMart and
General Motors.

Example 2. Voting Technologies and Uncounted Votes. Votes are counted using at least
5 di®erent technologies for tabulation in the United States { hand-counted paper, lever
machines, punch cards (at the center of the controversial recount in Florida in 2000), optically
scanned paper, and electronic voting machines. A standard measure for the percent of ballots
uncounted is the percentage di®erence between total ballots cast and the votes counted for
any given o±ce, say president. This is termed the \residual vote." Other factors, such as
demographics, also a®ect the rate of uncounted ballots.

The rate of residual votes ought to be independent of the technology used. For simplicity,
suppose we wish to know whether punch cards are worse than alternative technologies,
ignoring what exact alternative technology is used. Technologies used vary from county to
county, sometimes town to town. Let j index counties. Let Dj indicate whether a county
uses punch cards; it equals 1 if the county uses punchards and 0 otherwise. Let Yj represent
the residual vote rate in each county, and let Xj represent the socio-economic status of the
county; let ²j represent a random error.

Yj = ® + ¯1Dj + ¯2Xj + ²j

Essentially, the regression is two parallel lines, both with slope ¯2, but one with intercept
® and the other with intercept ® + ¯1. Make a graph Y on X.
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The coe±cient ¯1 is the expected di®erence between Punch Cards and other technologies,
holding constant a county's socio-economic condition.

Why hold Xj constant? Without Xj, the regression is mathematically identical to a
di®erence of means. One worry about the data, though, is that the counties with punch
cards might di®er systematically from the counties without punchcards and the factors that
account for the di®erence also a®ect the residual vote. For example, rural counties have
more administrative problems and thus higher residual vote rates than urban counties, but
urban counties are more likely to use punch card equipment (as an accident of history). We
might miss an important e®ect of punch cards if we ignore county demographics. (Try to
show this in a graph.)

The coe±cient ¯1 measures the di®erence between punch card and non-punch card coun-
ties, holding other factors constant.

1.A. Two Conceptions of Regression
i. The functional relationship of Y to X1; X2; :::; Xk.

Yi = ® + ¯1X1;i + ¯2X2;i + ¯3X3;i:::+ ¯kXk;i + ²i

ii. Conditional Mean
The random variables Y;X1; X2; :::; Xk have joint density f(y; x1; x2; :::; xk). The condi-

tional distribution f(y jx1; x2; :::; xk) can be characterized by its mean and conditional vari-
ance. We begin with the assumption that the conditional mean is a linear function of the
values of the random variables and that the error variance is constant:

E [Y jX1; X2; :::; Xk] = ® + ¯1X1 + ¯2X2 + ¯3X3::: + ¯kXk

V [Y jX] = ¾2
²

Both assumptions are readily relaxed, as we will see later in the course.

As a speci¯c case we may begin with the formula for the joint normal distribution. This
is of historical interest, but I also ¯nd that it helps make these ideas more explicit. For
simplicity I will deal with the case of 2 variables. In fact, I will often work with just 2
variables in this course to develop the basic concept or intuition.
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The conditional mean and variance are:

E [Y jX = x] =
Z
yf(yjx)dy = (¹y ¡ ¯¹x) + ¯x

V [Y jX = x] = ¾2
y(1¡ ½2)

To develop the core concepts we begin with the bivariate regression model. It is good
to get your footing with a simple model and then build up. Here I will develop the basic
properties of regression in the bivariate setting.

1.B. Assumptions

1. Linearity
yi = ® + ¯1X1;i + :::¯kXk;i + ²i

2. E [²] = 0.

3. Independence/Exogeneity: E [²X] = 0.

4. No Measurement Error in X.

5. Homoskedasticity: E[²i] = ¾2 for all i.

6. No Autocorrelation: E[²i²j] = 0:

The ¯rst four assumptions a®ect the bias of the estimates. Of particular concern is as-
sumption 3, which means that there are no ommitted variables and the relationship between
Y and X is not simultaneous.

The last two assumptions concern e±ciency.

1. C. Estimation

Estimation consists of deriving formulae for converting data into guesses about the un-
known parameters of the model, i.e., ®, ¯, and ¾2

² .

Method of Moments. We wish to ¯nd a and b, parameters of the estimated regression line
also known as the predicted values: ŷ = a + bx. De¯ne the residual as the vertical distance
of any point y from the estimated regression line: ei = yi ¡ ŷi = yi ¡ a ¡ bxi. The residual
can be thought of as a realization of the error term ².
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The second and third assumptions are in fact theoretical moments describing the condi-
tional distribution. Assume that those hold. That is, let us impose those restrictions on the
residuals.

1
n

nX

i=1
ei = 0

1
n

nX

i=1
(ei ¡ ¹e)(xi ¡ ¹x) = 0

Substituting the de¯nition of ei in each equation and solving for a and b yields:

a = ¹y ¡ b¹x

b =
Pn
i=1(xi ¡ ¹x)(yi ¡ ¹y)
Pn
i=1(xi ¡ ¹x)2

Least Squares. Another way to derive estimates is to minimize the error variance to ¯nd the
\best ¯tting" line. De¯ne the sum of squares as:

S =
nX

i=1
²2

We wish to ¯nd the values of ® and ¯ that minimize this function. Those values are de-
termined by the ¯rst derivatives. At a minimum both ¯rst derivatives of the function with
respect to the unknown parameters must equal 0.

@S
@®

= 0

@S
@¯

= 0

After some algebraic manipulations, we ¯nd that least squares yields the following esti-
mates:

a = ¹y ¡ b¹x

b =
Pn
i=1(xi ¡ ¹x)(yi ¡ ¹y)
Pn
i=1(xi ¡ ¹x)2

Maximum Likelihood.

1. D. Inference

Once we have taken data and calculated a and b and ¾̂2
² , we would like to know how to

use the estimates to draw inferences about theoretical conjectures and to make predictions.
We will build on the basic concepts of sampling theory.
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Sampling Theory. Recall from basic statistics that the average value of a random variable X
in any data set or sample is thought of as an estimate or guess about the population mean.

1. The sample mean, ¹x, is expected to yield an unbiased estimate of the population mean,
¹. That is, E[¹x] = ¹.

2. From sample to sample or study to study, the mean varies at a rate of ¾2=n, which is
the variance of ¹x. The square root of the variabe of ¹x is called the standard error.

3. Because the mean is the sum of random variables, the distribution of the mean is
normal with mean ¹ and variance ¾2=n. This is an application of the Central Limit
Theorem.

4. As n!1, V (¹x)! 1 and ¹x ! ¹ in probability. This is called consistency of ¹x as an
estimate of ¹. It is an application of the Law of Large Numbers.

The same ideas apply in regression analysis, which is, afterall, the estimate of a condi-
tional mean E[Y jX].

1.D.i. Properties of Estimates
We wish to know whether estimates are consistent or unbiased. Consistency means that

as the number of cases becomes large the estimate becomes extremely close to the true value.
This is the application of the Law of Large Numbers from probability theory to our statistical
estimation problem. Unbiasedness means that the average value is equal to the true value.
Both are statistical de¯nitions of the \correctness" or \accuracy" of the estimator.

We also wish to know whether estimates are e±cient { that is, do they use the infor-
mation available in a way the minimizes the variability or uncertainty about the estimate.
Frequetly, in choosing the best statistical speci¯cation and model we must choose between
a speci¯cation that is consistent (or unbiased) but ine±cient and one that is potentially
inconsistent. We face this choice, for example, when we decide whether to include a variable
or not in a regression analysis.

1.D.ii. Con¯dence Intervals
The degree of con¯dence that we have in an estimate will be expressed as the standard

error, which measures the rate at which the estimates will vary from sample to sample, if
we had the luxury of repeated sampling. The variance of the estimator (the square of the
standard error) is the weighted average of the squared distance estimator from its mean (the
true parameter value).

1.D.iii. Prediction.
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Consider any speci¯c value of X, say x0. We wish to know what value of y is predicted
when X = x0. This can be computed simply from the predicted values of the regression line

ŷ0 = a + bx0

Predictions are uncertain
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