
17.874 Lecture Notes

Part 2: Matrix Algebra




2. Matrix Algebra 

2.1. Introduction: Design Matrices and Data Matrices 

Matrices are arrays of numbers. We encounter them in statistics in at least three di®erent 

ways. First, they are a convenient device for systematically organizing our study designs. 

Second, data sets typically take the form rectangular arrays of numbers and characters. 

Third, algebraic and computational manipulation of data is facilitated by matrix algebra. 

This is particularly important for multivariate statistics. 

Over the next 2 weeks or so we will learn the basic matrix algebra used in multivariate 

statistics. In particular, we will learn how to construct the basic statistical concepts { means, 

variances, and covariances { in matrix form, and to solve estimation problems, which involve 

solving systems of equations. 

I begin this section of the course by discussing Design Matrices and Data Matrices. 

Design Matrices are arrays that describe the structure of a study. Many studies involve 

little actual design. The design matrix is the data matrix. Experiments, quasi-experiments, 

and surveys often involve some degree of complexity and care in their design. For any study, 

a design matrix can be very useful at the start for thinking about exactly what data needs 

to be collected to answer a question. 

There are several components to a design matrix. The rows correspond to units of analysis 

and unique factors in a study; the columns are variables that one would like to measure (even 

if you can't). At the very least one needs to set aside columns for the X variable and the Y 

variable. You might also consider an assignment probability (in an experiment or survey) or 

variable (this might be an instrumental variable in an observational study). 

For example, in the early and mid-1990s I did a series of about two dozen experiments 

involving campaign advertising. Early on in those studies I wrote down a simple matrix for 

keeping the factors in the studies straight. Units were individuals recruited to participate 
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in the study. The factors were that some people saw an ad from a Democrat, some people 

saw an ad from a Republican, and some saw no ad. In addition, some ads were negative 

and some were positive. I wanted to know how these factors a®ected various outcomes { 

especially, turnout and vote intention. Do candidates do better with positive or negative 

ads? Which candidates? Does turnout drop? 

Simple Design Matrix 
Source Tone Assignment Turnout Vote 
D + .2 TD+ VD+ 

D - .2 TD¡ VD¡ 

R + .2 TR+ VR+ 

R - .2 TR¡ VR¡ 

0 0 .2 T0 V0 

I found that writing down a matrix like this helped me to think about what the experiment 

itself could measure. I can measure the e®ect of negative versus positive ads on turnout by 

taking the following di®erence: [TD+ + TR+ ] ¡ [TD¡ + TR¡]. 

It also raised some interesting questions. Do I need the control group to measure all of 

the e®ects of interest? 

Data Matrices implement our design matrices and organize our data. Data matrices 

begin with information about the units in our study { people, countries, years, etc. They 

then contain information about the variables of interest. It really doesn't matter how you 

represent data in a database, except that most databases reserve blanks and \." for missing 

data. 

Below are hypothetical data for 10 subject for our experiments. The content of each 

variable is recorded so that it is most meaningful. Under the variable Source \D" means 

Democratic candidate. 
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Simple Design Matrix 
Subject Source Tone Gender Turnout Vote 
1 D + F Yes D 
2 D - F Yes R 
3 C 0 M No 0 
4 R - F Yes R 
5 C 0 M No 0 
6 R + M Yes D 
7 D + M Yes R 
8 C 0 M Yes D 
9 R - F Yes R 
10 D - M No 0 

We can't easily analyze these data. We need numerical representations of the outcome 

variables Turnout and Vote and the control variables, if any { in this case Gender. For such 

categorical data we would need to assign indicator variables to identify each group. Exactly 

how we do that may depend on the sort of analysis we wish to perform. Source, for example, 

may lead to two indicator variables: Democratic Source and Republican Source. Each equals 

1 if the statement is true and 0 otherwise. Tone might also lead to two di®erent indicator 

variables. 

Usually variables that are to be used in analysis are coded numerically. We might code 

D as 1 and R and 2 and Control group as 0. Tone might be 1 for +, 0 for none, and -1 

for negative. And so forth. This coding can be done during data analysis or during data 

entry. A word of caution always err on the side of too rich of a coding, rather than skimp 

on information available when you assemble your data. 

Matrices help us to analyze the information in a data matrix and help us think about 

the information contained (and not) in a study design. We will learn, for example, when the 

e®ects and parameters of interest can infact be estimated from a given design. 

2.2. De¯nitions 

Vectors are the building blocks for data analysis and matrix algebra. 

A vector is a column of numbers. We usually denote a vector as a lower case bold letter 
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(x, y, a). When we do not have a speci¯c set of numbers at hand but are considering a 

vector in the abstract. For example, 

0 1 
x1 ; B C B x2 ; C B C B x3 ; C B C Cx = B :; B C B C B :; C B C @ :; A 

xn 

In statistics, a vector is usually a variable. Geometrically, a vector corresponds to a point 

in space. Each element in the vector can be graphed as the \observation space." If data were, 

say, from a survey, we could graph how person 1 answered the survey, person 2, etc., as a 

vector. 

We could take another sort of vector in data analysis{the row corresponding to the values 

of the variables for any unit or subject. That is, a row vector is a set of numbers arranged 

in a single row: 

a = (  a1 ; a2; a3 ; :; :; :; ak ) 

The transpose of a vector is a rewritting of the vector from a column to a row or from a 

row to a column. We denote the transpose with an elongated apostrophe 0 . 

0 x = (  x1; x2; x3; :; :; :; xn ) 

A matrix is a rectangular array of numbers, or a collection of vectors. We write matrices 

with capital letters. The elements of a matrix are numbers. 

0 1 
x11; x21; :::xk1 CB x12; x22; :::xk2B C B CX = B x13; x23; :::xk3 C B C @ A::: 
x1n; x2n; :::xkn  

or 

X = (  x1; x2; x3; :; :; :;  xk ) 
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The dimensions of a matrix are the number of rows and columns. Above, X has n rows and 

k columns  so  we  say that  it  is  an  n £ k dimension matrix or just \n by k." 

It is important to keep indexes straight because operations such as addition and multi-

plication work on individual elements. 

The transpose of a matrix represents the reorganization of a matrix such that its rows 

become its columns. 0 

B 
x ;01
x ;02

1 

C B C 
0

3xB C CX0 = B :; B C B C B :; C B C 
:; 

B C B ;
C 

@ A 
0

kx0 1 
x11 ; x12 ; :::x1n CB x21 ; x22 ; :::x2n C B C 

B 
X = B x31 ; x32 ; :::x3n C B C @ A:::


xk1; xk2; :::xkn


Note: The dimension changes from n by k to k by n. 

A special type of matrix that is symmetric { the numbers above the diagonal mirror the 

numbers below the diagonal. This means that X = X0 . 

As with simple algebra, we will want to have the \numbers" 0 and 1 so that we can 

de¯ne division, subtraction, and other operators. A 0 vector or matrix contains all zeros. 

The analogue of the number 1 is called the Identity matrix. It has 1's on the diagonal and 

0's elsewhere. 0 1
1; 0; 0; 0; :::; 0 CB 0; 1; 0; 0; :::; 0 CB B C

I = B 0; 0; 1; 0; :::; 0 C B C @ A:::

0; 0; 0; 0; :::; 1


2.3. Addition and Multiplication 
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2.3.1. Addition 

To add vectors and matrices we sum all elements with the same index. 
0 1 
x1 + y1 ; B C B x2 + y2 ; C B C B x3 + y3 ; C 

x + y = 
B B B :; 

C C C B B B 
:; 
:; 

C C C A@ 

xn + yn 

Matrix addition is constructed from vector addition, because a matrix is a vector of vectors. 

For matrices A and B, A + B consists of ¯rst adding the vector of vectors that is A to the 

vector of vectors that is B and then performing vector addition for each of the vectors. 

More simply, keep the indexes straight and add each element in A to the element with 

the same index in B. This will produce a new matrix C. 

0 1 
a11 + b11; a21 + b21; :::ak1 + bk1 B C B a12 + b12; a22 + b22; :::ak2 + bk2 C

C = A + B = B C @ ::: A 

a1n + b1n; a2n + b2n; :::akn + bkn 

NOTE: A and B must have the same dimensions in order to add them together. 

2.3.2. Multiplication 

Multiplication takes three forms: scalar multiplication, inner product and outer product. 

We will de¯ne the multiplication rules for vectors ¯rst, and then matrices. 

A scalar product is a number times a vector or matrix. Let ® be a number: 

0 1 
®x1 ; B C B ®x2 ; C B C B ®x3 ; C B C C®x = B :; B C B C B :; C B C @ :; A 

®xk 
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The inner product of vectors is the sum of the multiple of elements of two vectors with 
P

the same index. That is, n This operation is a row vector times a column vector: i=1 xi ai. 

x 0 a. The ¯rst element of the row is multiplied times the ¯rst element of the column. The 

second element of the row is multiplied times the second element of the column, and that 

product is added to the product of the ¯rst elements. And so on. This operation returns a 

number. Note: the columns of the row vector must equal the rows of the column vector. 

In statistics this operation is of particular importance. Inner products return sums of 

squares and sums of cross- products. These are used to calculate variances and covariances. 

The outer product of two vectors is the multiplication of a column vector (dimension n) 

times a row vector (dimension k). The result is a matrix of dimension n by k. The element 

in the ¯rst row of the column vector is multiplied by the element in the ¯rst column of the 

row vector. This produces the element in row 1 and column 1 in the new matrix. Generally, 

the ith element of the column vector is multiplied times the jth element of the row vector 

to get the ijth element of the new matrix. 
0 1 
a1b1; a1 b2 ; :::a1bk B C B a2b1; a2 b2 ; :::a2bk Cab0 = B C @ ::: A 

an b1 ; anb2; :::anbk 

In statistics you will frequently encounter the outer product of a vector and itself when 

we consider the variance of a vector. 

For example, ee0 yields a matrix of the residuals squared and cross-products. 
0 12e1; e1 e2; :::e1 en B 2 C 

0 B e2e1 ; e2; :::e2 en C 
ee = B C @ ::: A 

ene1 ; ene2; :::e
2 
n 

2.3.3. Determinants 

The length of a vector x equals x 0 x. This follows immediately from the Pythagorean 

Theorem. Consider a vector of dimension 2. The square of the hypotenuse is the sum of the 
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square of the two sides. The square of the ¯rst side is the distance traveled on dimension 1 

2 2(x1) and the second side is the square of the distance traveled on dimension 2 (x2 ). 

The magnitude of a matrix is the absolute value of the determinant of the matrix. The 

determinant is the (signed) area inscribed by the sum of the column vectors of the matrix. 

The determinant is only de¯ned for a square matrix. 

Consider a 2x2 matrix with elements on the diagonal only. 

µ ¶
x11; 0 

X = 
0; x22 

The object de¯ned by these vectors is a rectangle, whose area is the base times the height: 

x11x22 . 

For a 2x2 matrix the determinant is x11x22 ¡ x12 x21. This can be derived as follows. The 

sum of the vectors (x11; x12) and  (x21; x22) de¯nes a parallelogram. And the determinant is 

the formula for the area of the parallelogram signed by the orientation of the object. To 

calculate the area of the parallelogram ¯nd the area of the rectangle with sides x11 + x21 

and x12 + x22. The parallelogram lies within this rectangle. The area inside the rectangle 

but not in the parallelogram can be further divided into two identical rectangles and two 

pairs of identical triangles. One pair of triangles is de¯ned by the ¯rst vector and the second 

pair is de¯ned by the second vector. The rectangles are de¯ned by the ¯rst dimension of the 

second vector and the second dimension of the ¯rst vector. Subtracting o® the areas of the 

triangles and rectangles leaves the formula for the determinant (up to the sign). 

Note: If the ¯rst vector equalled a scalar times the second vector, the determinant would 

equal 0. This is the problem of multicollinearity { the two vectors (or variables) have the 

same values and they cannot be distinguished with the observed values at hand. Or, perhaps, 

they are really just the same variables. 
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Let us generalize this by considering, ¯rst, a \diagonal matrix." 
0 
x11; 0; 0; 0; :::; 0 

1 

CB 0; x22; 0; 0; :::; 0 CB B C
X = B 0; 0; x33 ; 0; :::; 0 C B C @ A::: 

0; 0; 0; 0; :::; xnn 

This is an n-dimensional box. Its area equals the product of its sides: x11x22:::xnn. 

For any matrix, the determinant can be computed by \expanding" the cofactors along a 

given row (or column), say i. 
n X 

jXj = xij (¡1)
i+j jX(ij)j; 

j=1 

where X(ij) , called  the  ijth cofactor, is the matrix left upon deleting the ith row and jth 

column and jX(ij)j is the determinant of the ijth cofactor. 

To verify that this works, consider the 2x2 case. Expand along the ¯rst row: 

jX j = x11 (¡1)
1+1jx22j + x12 (¡1)

1+2 jx21j = x11x22 ¡ x12x21 

2.4. Equations and Functions 

2.4.1. Functions. 

It is important to keep in mind what the inpute of a function is and what it returns (e.g., 

a number, a vector, a matrix). Generally, we denote functions as taking a vector or matrix


as input and returning a number or matrix: f (y).


Linear and Quadratic Forms:


Linear form: Ax 

Quadratic form: x 0Ax 

2.4.2. Equations in Matrix Form. As in simple algebra an equation is such that the left 

side of the equation equals the right side. In vectors or matrices, the equality must hold 

element by element, and thus the two sides of an equation must have the same dimension. 
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A simple linear equation is:


Ax = c


or, for matrices: 

AX = C 

This de¯nes an n-dimensional plane. 

A quadratic form de¯nes an ellipsoid. 

0x Ax = c 

Given a speci¯c number c, the  values  of  xi's that solve this equation map out an elliptical 

surface. 

2.5. Inverses. 

We use division to rescale variables, as an operation (e.g., when creating a new variable 

that is a ratio of variables), and to solve equations. 

The inverse of the matrix is the division operation. The inverse is de¯ned as a matrix, 

B, such that 

AB = I: 

The general formula for solving this equation is 

bij 
jA(ij)j

0 

;= 
jAj 

where jC(ij) j is the determinant of the ijth cofactor of A. 

Consider the 2x2 case µ ¶ µ
b11 ; b

¶ µ ¶
a11; a12 12 1; 0 

= 
a21; a22 b21 ; b22 0; 1 

This operation produces 4 equations in 4 unknowns (the b's) 

a11b11 + a12b21 = 1  

a21b11 + a22b21 = 0  

10 



a11b12 + a12b22 = 0  

a21b12 + a22b22 = 1  

Solving these equations: b11 = a22 , b12 = ¡a12 , b21 = ¡a21 , and  b22 = a11a22 ¡a12 a21 a11 a22 ¡a12a21 a11 a22¡a12 a21 

a11 . You can verify that the general formula above leads to the same solutions. 
a11 a22¡a12 a21 

11




2.6. Statistical Concepts in Matrix Form 

2.6.1. Probability Concepts 

We generalize the concept of a random variable t o a random vector, x, each  of  whose  

elements is a random variable, xi . The joint density function of x is f (x). The cumulative 

density function of x is the area under the density function up to a point a1; a2 ; :::an. This  

is an n-fold integral: Z an 
Z a1 

F (a) =  ::: f (x)dx1:::dxn 
¡1 ¡1 

For example, suppose that x is uniform on the intervals (0,1). This density function is: 

f(x) =  1 if 0 < x1 < 1; 0 < x2 < 1; 0 < x3 < 1; :::0 < xn < 1. An n-fold box, or hypercube. 

The cumulative density is the volume of the box with height 1 and sides a1; a2 ; :::an, so  the  

density is a1a2 :::an 

2.6.1.1. Mean and Variance. 

We may also characterize the frequency of random variables in terms of their means and 

variances. The expectations operator is, as in univariate probability, the weighted average of 

the values of the variable, where the weights are the frequencies or probabilities. In taking 

the expected value of a vector or matrix we evaluate the expected value of each element of 

the vector or matrix. Let x be a random vector. 
0 10 1 
E[x1 ]; E [x1]; B B E[x2 ]; C C 

B B ¹2; C C B B E[x3 ]; 
C C 
B B ¹3; 

C C B C B C 
E[x] =  B B : C C 

B B : C C B B : C C 
B B : C C B C B C @ : 

E [xn] 
A @ : 

¹ n 

A 

The variance of a random vector is the set of variances and covariances of the variables.
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This is de¯ned as the expected value of the outer product of the vector: 
0 1 
E [(x1 ¡ ¹ 1)2 ]; E [(x1 ¡ ¹ 1)(x2 ¡ ¹ 2 )]; :::; E [(x1 ¡ ¹ 1)(xn ¡ ¹ n)] B C B E [(x2 ¡ ¹2)(x1 ¡ ¹1)]; E [(x2 ¡ ¹2)2]; :::; E [(x2 ¡ ¹2)(xn ¡ ¹ n)] CE[(x ¡ ¹)(x ¡ ¹)0] =  B C @ ::: A 

E [(xn ¡ ¹ n )(x1 ¡ ¹ 1)]; E[(xn ¡ ¹ n)(x2 ¡ ¹ 2)]; :::E [(xn ¡ ¹ n)
2] 

0 1 
¾1
2; ¾12 ; ¾13; :::; ¾1n B C 

2 ; ¾23; :::; ¾2n CB ¾12; ¾
2 

= B C @ :::: A 

¾1n ; ¾2n; ¾3n; :::; ¾
2 
n 

2.6.1.2. The Normal and Related Distributions 

The ¯rst two moments are su±cient to characterize a wide range of distribution functions. 

Most importantly, the mean vector and the variance covariance matrix characterize the 

normal distribution. 
1 

¡2 (x¡¹)
0§¡1 (x¡¹)f(x) =  (2¼)¡n=2j§j¡1=2 e 

If the xi are independent (0 covariance) and identical (same variances and means), then § 

simpli¯es ¾2 I, and  the  normal becomes:  

12¾¡n ¡ 2¾2 (x¡¹)0(x¡¹)f(x) =  (2¼)¡n= e 

A linear transformation of a normal random variable is also normal. Let A be a matrix 

of constants and c be a vector of constants and x be a random vector, then 

Ax + c » N(A¹ + c; A§A0) 

We may de¯ne the standard normal as follows. Let A be a matrix such that AA0 = §. 

Let c = ¹. Let  z be a random vector such that x = Az + ¹. Then,  z = A¡1(x ¡ ¹). Because 

the new variable is a linear transformation of x, we know that the result will be normal. 

What are the mean and variance: 

E [z] =  E[A¡1(x ¡ ¹)] = A¡1E(x ¡ ¹) =  0 
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V (z) =  E[(A¡1(x ¡ ¹))(A¡1(x ¡ ¹))0] 

= E[(A¡1(x ¡ ¹))((x ¡ ¹))0A0¡1
] 

= A¡1 = A¡1§0A0¡1
E[(x ¡ ¹))((x ¡ ¹))0]A0¡1 

= I: 

The last equality holds because AA0 = §. 

From the normal we derive the other distributions of use in statistical inference. The two 

key distributions are the Â2 and the F . 

The quadratic form of a normally distributed random vector will follow the Â2 distribu-

tion. Assume a standard normal vector z. 

0 z z » Â2 
n 

because this is the sum of the squares of n normal random variables with mean 0 and 

variance 1. Alternatively, if x is a normal random variable with mean ¹ and variance §, 

then (x ¡ ¹)0§¡1(x ¡ ¹) follows  a  Â2 with n degrees of freedom. 

The ratio of two quadratic forms will follow the F distribution. Let B and C be two 

matrices such that BC = 0. Let  A and B have ra and rb independent columns, respectively 

(i.e., ranks). Let x be a random vector with variance ¾2I, then  

(x 0AA=¾2)=ra) 
(x0Bx=¾2)=rb) 

» F [ra; rb] 

In statistical inference about regressions we will treat the vector of coe±cients as a random 

vector, b. We will construct hypotheses about sets of coe±cients from a regression, and 

express those in the form of the matrices B and C. The  Â2-statistic amounts to comparing 

squared deviations of the estimated parameters from the hypothesized paramenters. The 

F -statistic compares two models { two di®erent sets of restrictions. 

2.6.2.3. Conditional Distributions. 
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For completeness, I present the conditional distributions. These are frequently used in 

Bayesian statistical analysis; they are also used as a theoretical framework within which to 

think about regression. They won't be used much in what we do in this course. 

To de¯ne conditional distributions we will need to introduce an additional concept, par-

titioning. A matrix can be subdivided into smaller matrices. For example, an nxn matrix A 

may be written as, say, four submatrices A11; A12; A 21; A 22: 
µ ¶
A11; A12A = 
A21; A22 

We can write the inverse of A as the inverse of the partitions as follows: 

¡1 
11 (I + A 12FA21A 11 ); ¡A 11A 12F 

A¡1 = 
µ 
A¡1 

; 
¡FA 21A ¡1 F 

¶
11 ; 

where F = (A22 ¡ A21A
¡1 
11 A 12)

¡1 . We can use the partitioning results to characterize the 

conditional distributions. 

Consider two normally distributed random vectors x 1, x2: The density function for x 1 is 

f(x 1) » N (¹1; § 11): 

The density function for x1 is 

f(x 2) » N (¹2; § 22): 

Their joint distribution is 

f(x1; x2) » N (¹; § ); 

The variance matrix can be written as follows: 
µ ¶
§ 11; § 12§ = 
§ 21; § 22 

where § jk = E[(xj ¡ ¹jx k ¡ ¹k)] and j = 1; 2 and  k = 1; 2. 

The conditional distribution is arrived at by dividing the joint density by the marginal 

density of x1, yielding 

x2jx1 » N (¹2:1; § 22:1) 

¡1 ¡1where ¹2:1 = ¹2 + § 12§ 11 (x2 ¡ ¹2) and  § 22:1 = § 22 ¡ § 12§ 11 § 21. 
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2.6.2. Regression model in matrix form. 

1. Linear Model 

The linear regression model consists of n equations. Each equation expresses how the 

value of y for a given observation depends on the values of xi
0 and ²i . 

y1 = ¯ 0 + ̄  1 X11 + ¯ 2 X21 ::: + ¯ kXk1 + ² 1 

y2 = ¯0 + ̄ 1 X12 + ¯2 X22 ::: + ¯kXk2 + ²2 

.  ..  

yi = ¯0 + ¯1X1i + ¯2 X2i ::: + ¯kXki + ²i 

.  ..  

yn = ¯0 + ¯1 X1n + ¯2X2n::: + ¯kXkn + ² n 

This can be rewritten using matrices. Let y be the random vector of the dependent 

variable and ² be the random vector of the errors. The matrix X contains the values of the 

independent variables. The rows are the observations and the columns are the variables. To 

capture the intercept, the ¯rst column is a column of 1's. 
0 
1; x11; :::xk1 

1 

CB 1; x12; :::xk2 CB B C
X = B 1; x13; :::xk3 C B C @ ::: A 

1; x1n; :::xkn 

Let ¯ be a vector of k +1  constants:  ¯ 0 = (¯0; ¯1; ¯2; ::¯k). Then, X¯ produces a vector 

in which each entry is a weighted average of the values of X1i; :::Xki for a given observation 

i where the weights are the ¯'s. 
0 1 
¯ 0 + ¯ 2X21::: + ¯ 1X11 + ̄  k Xk1 + ² 1 B C B ¯ 0 + ¯ 1X12 + ̄  2X22::: + ¯ k Xk2 + ² 2 C B C CB ::: B CX¯ = B C B ¯0 + ¯1 X1i + ¯2X2i::: + ¯k Xki + ²i C B C @ ::: A 

¯ 0 + ¯ 1 X1n + ¯ 2X2n::: + ¯ k Xkn + ² n 
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With this notation, we can express the linear regression model more succinctly as: 

y = X¯ + ² 

2. Assumptions about Errors'


A1. Errors have mean 0.


E [²] =  0 


A2.	 Spherical distribution of errors (no autocorrelation, homoskedastic). 

E [²²0] =  ¾² 
2I 

A3. Independence of X and ².


E [X 0²] =  0 


3. Method of Moments Estimator 

The empirical moments implied by Assumptions 1 and 3 are that 

i0 e = 0  

X 0 e = 0  

where e = y ¡ Xb. We can use these to derive the method of moments estimator of b, i.e., 

the formula we use to make our best guess about the value of ¯ based on the  observed  y and 

X. 

Substitute the de¯nition of e into the second equation. This yields 

X 0(y ¡ Xb) =  0  

Hence, X 0y ¡ X 0Xb  = 0, which we can rewrite as (X 0X)b = X 0y.  This is a  system  of  linear  

equations. X 0 X is a kxk matrix. We can invert it to solve the system: 

b = (X 0X)¡1X 0y 
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Conceptually, this is the covariance(s) between y and X divided by the variance of X, which 

is the same idea as the formula for bivariate regression. The exact formula for the coe±cient 

on any given variable, say Xj , will not be the same as the formula for the coe±cient from 

the bivariate regression of Y on Xj . We must adjust for the other factors a®ecting Y that 

are correlated with Xj (i.e., the other X variables). 

Consider a case with 2 independent variables and a constant. For simplicity, let us deviate 

all variables from their means: This eliminates the constant term, but does not change the 

solution for the slope parameters. So the vector xj is really xj¡ x¹j. Using the inner products 

vectors to denote the sums in each element, we can express the relevant matrices as follows. 

0 x1 
0 ; xx11 2 

¶µ
x

X0X = 
0 x2 

0 ; xx12 2x


0

2x1
0 ;2 ¡x x2

¶µ
1 

(X0X)¡1 x

0

1x x1
= 
x 20 )2x1

0 (2 ¡x x2
0

1x1
0 ;1x x2¡x 

(X0 y) =  
µ

0 y1
0 y2

¶
x

x 

Calculation of the formula for b consists of multiplying the X 0X matrix (x-prime-x matrix) 

times the vector X 0y. This is analogous to dividing the covariance of X and Y by the variance 

of X. 
0 ;2 ¡x x2x 
¡x 

0

2x1
0 y1
0 y2

¶¶ µ
x 
x

µ
1 

b = 20 )2x1
0 (2 ¡x x2

0

1x1
0 ;1x x2

0

1x x1x 0 1 
0 )y2

0 )(x x21
20 )x21

0 ) (y x¡1
0 ) (x x2 ¡2


0 )(x x22
0 )(x x11


(xµ ¶ Bb1 = 
b2 

C CB (xB C @ A 
0 )y1

0 )(x x21
20 )x21

0 ) (y x2 ¡

0 ) (x x22 ¡


0 )(x x11
0 )(x x11


(x
(x
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2.7. Di®erentiation and Optimization 

We will encounter di®erentiation in statistics in estimation, where we wish to minimize 

squared errors or maximize likelihood, and in developing approximations, especially Taylor's 

Theorem. 

The primary optimization problems take one of the following two forms. 

First, least squares consists of choosing the values of b that minimize the sum of squared 

errors with respect to ¯: 

S = ²0² = (y ¡ X¯)0(y ¡ X¯) 

This is a quadratic form in ¯. 

Second, maximum likelihood estimation consists of choosing the values of the parameters 

that maximize the probability of observing the data. If the errors are assumed to come from 

the normal distribution, the likelihood of the data is expressed as the joint density of the 

errors: 
¡ 

2¾22L(²; ̄ ; ¾² ) =  (2¼)¡n=2¾¡n e 
1 
² 
²0² 

² 

2¾
2

= (2¼)¡n=2 ¾¡n e 
¡ 1 

² 
(y¡X¯)0 (y¡X¯) 

² 

This function is very non-linear, but it can be expressed as a quadratic form after taking 

logarithms: 
n 1 

ln(L) =  ¡ ln(2¼) ¡ nln(¾²) ¡ (y ¡ X¯)0(y ¡ X¯)
2 2¾² 

2 

The objective in both problems is to ¯nd a vector b that optimizes the objective functions 

with respect to ¯. In the least squares case we are minimizing and the likelihood case we 

are maximizing. In both cases, the functions involved are continuous, so the ¯rst and second 

order conditions for a maximum will allow us to derive the optimal b. 

Although the likelihood problem assumes normality, the approach can be adapted to 

many di®erent probability densities, and provides a fairly °exible framework for deriving 

estimates. 

19 



0 

Regardless of the problem, though, maximizing likelihood or minimizing error involves 

di®erentiation of the objective function. I will teach you the basic rules used in statistical 

applications. They are straightforward but involve some care in accounting the indexes and 

dimensionality. 

2.7.1. Partial Di®erentiation: Gradients and Hessians. Let y = f(x). The outcome 

variable y changes along each of the xi dimensions. We may express the set of ¯rst partial 

derivatives as a vector, called the gradient. 
0 @f(x) 1 

@x1 B @f(x) C B C B	 @x2 C
@y CB : B C= B C@x B : C B C @ A: 

@f(x) 
@xn 

In statistics we will encounter linear forms and quadratic forms frequently. For example, 

the regression formula is a linear form and the sums of squared errors is expressed as a 

quadratic form. The gradients for the linear and quadratic forms are as follows: 

@Ax 
= A0 

@x 

@x0Ax 
= (A + A0)x 

@x 
@x 0Ax 

0 = xx 
@A 

Consider the linear form. We build up from the special case where A is a vector a. Then, 
Pn y = a x = i=1aixi. The gradient returns a vector of coe±cients: P 0 @ n 

aixi 
1 0 1 

i=1 
@x1 

a1 P B n C B C B C B @ 
i=1 

aixi C B a2 C B C B @x2 C@a 0 x B C B : C 
= B : C = B C = a B C B C B : C@x B : C B C B C @ A @ : A P	 : 

n 
aixi an@	

i=1 
@xn 

Note: a is transposed in the linear form, but not in the gradient. 
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More generally, the gradient of y = Ax with respect to x returns the transpose of the 

matrix A. Any element, yi, equals a row vector of A = ai times the column vector x. 

Di®erentiation of the ith element of y returns a column vector that is the transpose of the 

ith row vector of A. The gradient of each element of y returns a new column vector. As a 

result, the rows of A become the columns of the matrix of gradients of the linear form. 

The Hessian is the matrix of second partial derivatives: 
10 @f2 (x) @f2 (x) @f2 (x)

; :::  @x1@xn@x1@x1 
; @x1@x2 B C B @f2 (x) ; @f

2 (x) C; :::  @f
2 (x) CH = B @x2@x1 @x2@x2 @x2@xn B C @ ::: A 

@f2 (x) @f2 (x) @f2 (x)
; :::  @xn@xn@xn @x1 

; @xn @x2 

Note: This is a symmetric matrix. Each column is the derivative of the function f with 

respect to the transpose of X. So the Hessian is often written: 

@2 
H = [fij] =  

y 
: 

@xx0 

Hessian's are commonly used in Taylor Series approximations, such as used in the Delta 

Technique to approximate variances. The second order Taylor Series approximation can be 

expressed as follows: 

1 XX 
0 0y ¼ 

n n 

(xi ¡ xi )(xj ¡ xj)fij(x 0) =  
1 
(x ¡ x 0)0H(x 0)(x ¡ x 0)

2 2i=1 j=1 

They are also important in maximum likelihood estimation, where the Hessian is used 

to construct the variance of the estimator. For the case of a normally distributed random 

vector with mean ¹ and variance ¾2, the Hessian is P 0 n 1 
¡n=¾2; 

¡ 
i=1 (xi ¡¹) @ P A 

nH = ¾4 

¡ 
i=1
(xi¡¹) n Pn; 2¾4 ¡ ¾

1 
6 i=1(xi ¡ ¹)2 

¾4 

The expected value of the inverse of this matrix is the variance-covariance matrix of the 

estimated parameters. 

2.7.2. Optimization. At an optimum the gradient equals 0 { in all directions the rate 

of change is 0. This condition is called the ¯rst order condition. To check whether a given 

21




point is a maximum or a minimum requires checking second order conditions. I will not 

examine second order conditions, but you are welcome to read about and analyze them in 

the textbook. 

The ¯rst order condition amounts to a system of equations. At an optimum, there is a 

vector that solves the minimization or maximization problem in question. That vector is 

arrived at by setting the gradient equal to zero and solving the system of equations. 

Consider the least squares problem. Find the value of ¯ = b that minimizes: 

S = (y ¡ X¯)0 (y ¡ X¯) 

Using the rules of transposition, we can rewrite this as follows: 

0 y + ̄ 0X0 0X¯ ¡ ¯ 0X0 0 y + ¯ 0X0S = (y 0 ¡ ¯0X0)(y ¡ X¯) =  (y X¯ ¡ y y) =  y X¯ ¡ 2y0X¯ 

The gradient of S with respect to ¯ consists of derivatives of quadratic and linear forms. 

Using the rules above: 
@S 

= 2X0X¯ ¡ 2X0 y
@¯ 

At a minimum, the value b guarantees that the gradient equals 0: 

@S 
= 2X0Xb ¡ 2X0 y = 0 

@¯ 

The  solution in terms  of  b is 

b = X0X¡1
X0 y 

For the maximum likelihood problem, the ¯rst order conditions are:


@ln(L) 1
 ^= ¡ (2X0X¯ ¡ 2X0 y) =  0 
@¯ ¾22^²


@ln(L)

= ¡n^ ^ ^¾¡1 + ¾¡3 + ((y ¡ X¯)0(y ¡ X¯) =  0² ² @¾² 

The solution is


^
¯ = X0X
¡1
X0 y 

1 1 
^ 0^ ^¾² = (y ¡ X¯)0(y ¡ X¯) =  e e 

n n 

where e is the vector of residuals. 
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