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My area of research is in formal methods for verification of distributed 
computation.  One of the chief goals of our research group (and my research 
program, in particular) is to increase the automation of reasoning about the 
correctness of distributed system designs and their implementations. 
 
One of the chief tools we use is the Larch Prover (LP).  LP is an automated 
proving assistant.  In the Donald MacKenzie's taxonomy, LP is an interactive 
prover that produces non-human-like proofs.  Producing a "proof" with LP 
generally consists of an iterative process very much like the one described 
Boyer.  The human enters a conjecture which LP then attempts to prove.  LP will 
apply one or more of its available rules to generate (hopefully simpler) 
subgoals to prove.  Most likely LP will get stuck somewhere in the process and 
need guidance to continue.  For example, the user might have to suggest a value 
to instantiate into an existential quantifier in order to discharge a branch of 
a case analysis.  The result at the end of a successful interaction is a claim 
by LP that the desired conjecture has been proved. 
 
The interesting point is to examine what remains from this process.  The LP 
user now has a "script" for proving the theorem.  The script is the series of 
commands that the user enters to get LP to agree that the conjecture is true. 
Entries in the script may include some obvious steps that any mathematician 
will recognize (at least once they are decoded) like "use induction on A" or 
"instantiate B as D+E".  On the other hand, the script may include commands 
asking LP to perform larger operations like "use critical pairs" (an operation 
related to the resolution).  Most interesting however, is what is _not_ there. 
What is not there is the actual text of what would recognized as a formal 
proof.  That is, the proof script consist _only_ of the hints (commands) to 
give LP when it gets stuck. 
 
To be fair, one could ask LP to print out most of the intermediate steps in 
excruciating detail.  In practice, however, no one ever does.  Why?  For three 
reasons.   
 
First, the details of the formal proofs are not actually very 
interesting.  The exact steps do not serve an explanatory function.  This is 
exactly the same reason almost no full text formal proofs have been published. 
Mathematicians care that the formal steps _can_ be done, but they do not care 
what they actually are. 
 
Second, partly by design, LP tends not to jump over the "big steps" on its own. 
So the interesting bits of the proof (e.g. its structure) do tend to end up in 
the proof script.  If you are lucky, the interesting bits are not swamped by 



extraneous minutia. 
 
Third, we trust LP to do the brute force plodding flawlessly.  LP may not be 
very "smart".  It probably won't get to the end of a proof on its own. 
However, the steps it does take we trust to be sound.   
 
In many ways, this third point distinguishes the whole research area of theorem 
provers and automated theorem proving assistants from the sort of computer 
assisted proof done by Appel and Haken.  In the proof of the four color 
theorem, Appel and Haken used a specialized (and if my old adviser, David 
Gries, is to be believed, poorly structured) computer program to verify certain 
cases of the proof.  The very fact that this program was written as part of the 
proof makes verifying the program part of verifying the proof.   
 
In contrast, theorem provers are used, examined, extended, and debugged 
repeatedly over a period of years.  The very fact that a community of users 
exists for a particular tool lends assurance that the tool performs its 
assigned tasks as requested.  In some sense, the correctness of the theorem 
prover itself is a conjecture that is separable from the theorems it is used to 
check.  Does this body of evidence for the correctness of a theorem prover 
actually constitute a proof, in the mathematical sense?  Perhaps not.  But by 
the same token, neither does peer review and publication of a purported "proof" 
constitute definitive proof that the publication is, in fact, correct. 
 
In some ways LP proof scripts are easier to check than large mathematical 
treatise.  I suspect, for example, that it would be easier me to write my 
own theorem proving assistant to recheck an LP script than for me to verify 
the steps in Andrew Wiles proof of the Taniyama-Shimura conjecture. 
 
Do LP proofs scripts serve explanatory functions?  They may.  Over time our 
research group has developed a body of proof technology in a mathematical 
sense.  As a result, the proofs about distributed system that our group 
produces follows a very stylized form.  (This stylized form is what has led to 
the push for automation of the proof techniques.)  As a result, the part of the 
proof then ends up in the LP proof script tends to be the part that makes this 
particular proof different from previous ones.  Thus, to the educated eye, the 
proof script actually highlights the interesting parts of the proof. 
 
I would argue, however, that not all proofs need be explanatory.  Some are in 
fact, practical ends in themselves.  That is, proving a system correct may only 
be as interesting in so far as one cares that the system is correct and it may 
have no further implications for building further mathematical structures. 
In these cases, proof scripts become very useful.  In particular, when a system 
design changes it is often very easy to reverify the system using LP when 
reworking even an informal proof by hand may be extremely cumbersome. 
 


