
Network Models II

Shortest Path
Cross Docking

Enhance Modeling Skills
Modeling with AMPL

15.057 Spring 03 Vande Vate 1

The Shortest Path Model

aFind the
shortest
path from
Home to 5

H

H

6

53

4

21

8

3

3

21

6

1
4

2 1

3

7

1

15.057 Spring 03 Vande Vate 2

Direction

aTwo-way

streets

aOne-way

streets

H

H

6

53

4

21

8

3

3

21

6

1
4

2 1

3

7

1

15.057 Spring 03 Vande Vate 3

03ShortestPathModel.xls

Connectivity
From\To Home Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7

Distance
From\To Home Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7

Home 1 Home 4 7 8
Site 1 1 1 1 Site 1 4 6 1
Site 2 1 1 1 Site 2 6 1 2
Site 3 1 1 1 Site 3 1 1 1
Site 4 1 1 1 1 Site 4 7 1 3 2
Site 5 1 1 1 Site 5 2 3 3
Site 6 1 1 1 Site 6 3 3
Site 7 1 1 1 Site 7 8 2 1

Route
From\To Home Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7

Total
From

Total
Distance Home Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7

Total
From

Home 0 Home 0 0 0
Site 1 0 Site 1 0 0 0
Site 2 0 Site 2 0 0 0
Site 3 0 Site 3 0 0 0
Site 4 0 Site 4 0 0 0
Site 5 0 Site 5 0 0 0
Site 6 0 Site 6 0 0 0
Site 7 0 Site 7 0 0 0

Total To 0 Total To 0 0 0
Total From -

Total To 0
Net Required 1 -1 0

Shortest Path Model

1 1

1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0

15.057 Spring 03 Vande Vate 4

Challenge

aBuild a Solver model

15.057 Spring 03 Vande Vate 5

A Solver Model

aThe Objective: Minimize U21
aThe Variables: C13:J20
aThe Constraints:

Only travel on existing edges
C13:J20 <= C3:J10

Number From - Number To = Net Required
C22:J22 = C23:J23

15.057 Spring 03 Vande Vate 6

Flow Conservation

aNumber From - Number To = Net Required

a Number of times - Number of = ?

we leave times we enter

a+1 at Home (we leave once)
a-1 at Site 5 (we arrive once)
a0 everywhere else

each time we arrive (if ever), we leave

15.057 Spring 03 Vande Vate 7

Compare with Assignment Model

aAssignment Model
Sum across each row = 1
Sum down each column = 1
Each variable appears in 2 constraints

aShortest Path Model
Sum across a row - Sum down the column = 0
Trips out of a site - Trips into the site
Each variable appears in ? constraints

15.057 Spring 03 Vande Vate 8

Network Flow Problems

aEach variable appears in at most two constraints
At most one constraint as - the variable
At most one constraint at + the variable

aAssignment
Sum across each row = 1
Sum down each column = 1

aShortest Path
Sum across the a row - sum down the col = #

15.057 Spring 03 Vande Vate 9

Bounds

aVariables can also have bounds
e.g., in the Shortest Path Model:

Number of times we use each variable
Lower bound: >= 0
Upper bound: <= 1 if it is an edge, 0 otherwise

15.057 Spring 03 Vande Vate 10

Properties of Network Flows

aIf the bounds and RHS are integral, the
solution will be integral
aIt the costs are integral, the reduced costs

and marginal values will be integral
aCan be solved very quickly
aLimited demands on memory

15.057 Spring 03 Vande Vate 11

Crossdocking

a2 customers
aMinimize shipping costs

a3 plants
a2 distribution centers

15.057 Spring 03 Vande Vate 12

A Network Model

15.057 Spring 03 Vande Vate

Unit Shipping Costs Arc Capacities

Plant to
DC DC 1 DC 2 Costs Plant to DC DC 1 DC 2
Plant 1 5.0$ 5.0$ Capacities Costs Plant 1 200 200
Plant 2 1.0$ 1.0$ Flows Flows Plant 2 200 200
Plant 3 1.0$ 0.5$ Payments Payments Plant 3 200 200

DC to
Customer DC 1 DC 2

DC to
Customer DC 1 DC 2

Customer 1 2.0$ 2.0$ Customer 1 200 200
Customer 2 12.0$ 12.0$ Customer 2 200 200

Shipments Payments

Plant to
DC DC 1 DC 2 Total Out Supply Plant to DC DC 1 DC 2 Total Out
Plant 1 - - - 200 Plant 1 -$ -$ -$
Plant 2 - - - 300 Costs Plant 2 -$ -$ -$
Plant 3 - - - 100 Capacities Plant 3 -$ -$ -$

Total In - - Flows Total In -$ -$ -$
Costs

Capacities
DC to

Customer DC 1 DC 2 Total In Demand
DC to

Customer DC 1 DC 2 Total Out
Payments Customer 1 - - - 400 Customer 1 -$ -$ -$

Customer 2 - - - 180 Customer 2 -$ -$ -$
Total Out - - Total In -$ -$ -$

Net Flow DC 1 DC 2
- - Total Shipping Cost -$

Minimum Cost Network Flow Problem

Transportation Costs ($ 000/Ton) Transportation Capacities

Challenge

aBuild a Solver Model

15.057 Spring 03 Vande Vate 14

A Solver Model

aObjective: Minimize K28
aVariables: C17:D19, C23:D24

aConstraints:

Do not exceed supply at the plants
E17:E19 <= F17:F19

Meet customer demand
E23:E24 >= F23:F24

Do not exceed shipping capacity
C17:D19 <= K6:L8 and
C23:D24 <= K11:L12

15.057 Spring 03 Vande Vate 15

And...

aFlow conservation at the DCs
C28:D28 = 0

aSupply and Demand like Autopower
aFlow conservation at DCs like Shortest Path

15.057 Spring 03 Vande Vate 16

Network Flows: Good News

aLots of applications

aSimple Models

aOptimal Solutions Quickly

aIntegral Data, Integral Answers

15.057 Spring 03 Vande Vate 17

Network Flows: Bad News

aUnderlying Assumptions
Single Homogenous Product
Linear Costs
No conversions or losses
...

15.057 Spring 03 Vande Vate 18

Homogenous Product

15.057 Spring 03 Vande Vate 19

Must be able to interchange
positions of product anywhere

Linear Costs

aNo Fixed Charges
aNo Volume Discounts
aNo Economies of Scale

15.057 Spring 03 Vande Vate 20

Summary
aNetwork Flows

Simple Formulation
Flow Out (sum across a row) <= Capacity
Flow In (sum down a column) >= Demand
Flow In - Flow Out = Constant

Limited by
Homogenous Product
Linear Costs
etc.

Integer Data give Integral Solutions

15.057 Spring 03 Vande Vate 21

Modeling with AMPL

a Problems with Excel Solver
Integration of “Model” and Data

Example:
Change the time horizon of our Inventory Model

Excel is a limited database tool
a Algebraic Modeling Languages

Separate the “Model” from the Data

Keep the data in databases

15.057 Spring 03 Vande Vate 22

How they work

Conceptual Model

Data

Algebraic Modeling Language
AMPL/OPL/GAMS/XPress/...

Optimizer
CPLEX
OSL
XPress

15.057 Spring 03 Vande Vate 23

Why AMPL

aEstablished in US
aVery good book
aLower barrier to entry
aFree “student” version
aIndustrial strength tool

15.057 Spring 03 Vande Vate 24

Our Use of AMPL

aPseudo AMPL to discuss models
In class
In exams

aNeed to be precise about
What’s a parameter, variable, …
Indexing: relationships between variables,
data, constraints

aChallenges and Project

15.057 Spring 03 Vande Vate 25

Is this necessary/valuable?

aAMPL is very detailed
Expect 1 or 2 per team to master
Rest to read and understand

aBrings out the real issues
Practical implementation -- you can oversee
Data issues -- the real challenge

aValuable tool

15.057 Spring 03 Vande Vate 26

The Transportation Model

aset ORIG;

aset DEST;

aparam supply {ORIG};

aparam demand {DEST};

aparam cost {ORIG, DEST};

avar Trans {ORIG, DEST} >= 0;

15.057 Spring 03 Vande Vate 27

Transportation Model

minimize Total_Cost:
sum{o in ORIG, d in DEST}

cost[o,d]*Trans[o,d];
s.t. Supply {o in ORIG}:

sum{d in DEST} Trans[o,d] <= supply[o];
s.t. Demand {d in DEST}:

sum{o in ORIG} Trans[o,d] >= demand[d];

15.057 Spring 03 Vande Vate 28
a

The Data

aAn Access Database called TransportationData.mdb
aTables in the database

Origins: Supply information

Destinations: Demand information

Origin Supply
Amsterdam 500
Antwerp 700
The Hague 800

Destination Demand
Leipzig 400
Liege 200
Nancy 900
Tilburg 500

15.057 Spring 03 Vande Vate 29

The Costs

aCost: Unit
transportation
costs

origin destination cost
Amsterdam Leipzig 120
Amsterdam Liege 41
Amsterdam Nancy 130
Amsterdam Tilburg 59.5
Antwerp Leipzig 61
Antwerp Liege 100
Antwerp Nancy 40
Antwerp Tilburg 110
The Hague Leipzig 102.5
The Hague Liege 122
The Hague Nancy 90
The Hague Tilburg 42

15.057 Spring 03 Vande Vate 30

AMPL’s Output

aAMPL reads the model and the data,
combines the two and produces (in
human readable form) …

AMPLOutput.txt
Produced by the command:
expand >AMPLOutput.txt

15.057 Spring 03 Vande Vate 31

Reading Data

table OriginTable IN "ODBC"
"D:\Personal\15057\TransportationData.mdb"

"Origins":

ORIG <- [Origin], supply~Supply;

Explanation:
‘table’ is a keyword that says we will read or write data
‘OriginTable’ is a name we made up. No other AMPL model

entity can have this name
‘IN’ is a key word that says we are reading data.
“ODBC” says we are using ODBC to read the data

15.057 Spring 03 Vande Vate 32

Explanation

a "D:\Personal\15057\TransportationData.mdb” is the
path to the database. Alternatively you can create a
DSN (data source name) for this file, say TransportData,
and use the command “DSN=TransportData”.

a "Origins” is the name of the table in the database.
Alternatively we can use an SQL command like
“SQL=SELECT * FROM Origins”

a The : is syntax. What follows is the mapping of the data
we read to AMPL objects that will hold it.

a The brackets [] around Origin mean that this field in the
database indexes the data, e.g., 500 is the supply for
Amsterdam.

15.057 Spring 03 Vande Vate 33

Explanation Continued

aORIG <- [Origin] says that the values of
the field Origin will define the set ORIG of
origins
asupply~Supply says that the values of the

parameter supply should hold the values
read from the field Supply in the database

aread table OriginTable; reads the data.

15.057 Spring 03 Vande Vate 34

Reading Data

table DestinationTable IN "ODBC"
"D:\Personal\15057\TransportationData.mdb"

"Destinations":

DEST <- [Destination], demand~Demand;

Explanation:
a ‘table’ is a keyword that says we will read or write data
a ‘DestinationTable’ is a name we made up. No other AMPL

model entity can have this name
a ‘IN’ is a key word that says we are reading data.
a “ODBC” says we are using ODBC to read the data

15.057 Spring 03 Vande Vate 35

Explanation

a "D:\Personal\15057\TransportationData.mdb” is the
path to the database. Alternatively you can create a
DSN (data source name) for this file, say TransportData,
and use the command “DSN=TransportData”.

a ”Destinations” is the name of the table in the database.
Alternatively we can use an SQL command like
“SQL=SELECT * FROM Destinations”

a The : is syntax. What follows is the mapping of the data
we read to AMPL objects that will hold it.

a The brackets [] around Destination mean that this field
in the database indexes the data, e.g., 400 is the
demand for Leipzig.

15.057 Spring 03 Vande Vate 36

Explanation Continued

aDEST <- [Destination] says that the
values of the field Destination will define
the set DEST of destinations
ademand~Demand says that the values of

the parameter demand should hold the
values read from the field Demand in the
database

15.057 Spring 03 Vande Vate 37

Reading Cost

table CostTable IN "ODBC"

"D:\Personal\15057\TransportationData.mdb"

"Cost":

[origin, destination], cost;

Explanation:
a ‘table’ is a keyword that says we will read or write data

a ‘CostTable’ is a name we made up. No other AMPL

model entity can have this name
a ‘IN’ is a key word that says we are reading data.
a “ODBC” says we are using ODBC to read the data

15.057 Spring 03 Vande Vate 38

Explanation

a "D:\Personal\15057\TransportationData.mdb” is the

path to the database. Alternatively you can create a
DSN (data source name) for this file, say TransportData,
and use the command “DSN=TransportData”.

a ”Cost” is the name of the table in the database.
Alternatively we can use an SQL command like
“SQL=SELECT * FROM Cost”

a The : is syntax. What follows is the mapping of the data
we read to AMPL objects that will hold it.

a The brackets [] around origin and destination mean that
these two fields in the database index the data, e.g.,
120 is the unit transportation cost from Amsterdam to
Leipzig.

15.057 Spring 03 Vande Vate 39

Explanation Continued

aWe don’t have an <- here, because we
are not defining the members of a set.
aWe read the values of the field cost in the

database into the parameter cost. Note
that since these two names are identical,
we don’t need the ~.

aread table CostTable; reads the data.

15.057 Spring 03 Vande Vate 40

Running AMPL

amodel d:\15057\TransportationModel.mod;

aoption solver cplex; # use cplex to solve

asolve;

adisplay Trans;

15.057 Spring 03 Vande Vate 41

Writing Output

table TransOutTable OUT "ODBC"
"D:\Personal\15057\TransportationData.mdb"

"TransOut":

{origin in ORIG, destination in DEST:

Trans[origin, destination] > 0}
-> [origin, destination], Trans[origin,destination]~Trans;

write table TransOutTable;
Explanation:
a ‘table’ is a keyword that says we will read or write data
a ‘TransOutTable’ is a name we made up. No other AMPL

model entity can have this name

15.057 Spring 03 Vande Vate 42

Explanation

a ‘OUT’ is a key word that says we are writing data.
a “ODBC” says we are using ODBC to write the data
a "D:\Personal\15057\TransportationData.mdb” is the

path to the database. Or you can use “DSN=…”
a "TransOut” is the name of the table to create. AMPL

drops and writes this table. Any data currently in the
table is lost.

a : is syntax. It separates the description of the
destination from the definition of the data and the
mapping of the columns

15.057 Spring 03 Vande Vate 43

More Explanation

a {origin in ORIG, destination in DEST:

Trans[origin, destination] > 0} defines the index set
that will control the data to write out. This says to only
report on origin-destination pairs where we actually
send a positive flow.

a -> is syntax. It separates the indexing from the data
definition and mapping to fields of the output table.

a [origin, destination] indicates that the records of the
output table are indexed by the origin-destination pairs.
AMPL will write a new record for each pair.

a Trans[origin,destination]~Trans says to create a field
called Trans in the table and to populate it with the
values of the Trans variable.

15.057 Spring 03 Vande Vate 44

Explanation completed
awrite table TransOutTable; actually writes

the data.
aThe output is:

a More details available at:
a http://www.ampl.com/cm/cs/what/ampl/NEW/tables.html

origin destination Trans
Amsterdam Leipzig 300
Amsterdam Liege 200
The Hague Leipzig 100
The Hague Tilburg 500
The Hague Nancy 200
Antwerp Nancy 700

15.057 Spring 03 Vande Vate 45

http://www.ampl.com/

