
Integer Programming II

Modeling to Reduce Complexity
Capturing Economies of Scale

15.057 Spring 03 Vande Vate 1

Better Models

Better Formulation can distinguish
solvable from not.
Often counterintuitive what’s better
Has led to vastly improved solvers that
actually improve your formulation as they
solve the problem.

15.057 Spring 03 Vande Vate 2

In Theory...

Each new binary variable doubles the

difficulty of the problem Potential Complexity

1E+12

9E+11

8E+11

7E+11

6E+11

5E+11

4E+11

3E+11

2E+11

1E+11

0
0 5 10 15 20 25 30 35 40 45

No. of Binary Variables 315.057 Spring 03 Vande Vate

Eliminate Excess Variables

Assign each customer to a DC
s.t. AssignCustomers{cust in CUSTOMERS}:

sum{dc in DCS} Assign[cust, dc] <= 1;

What improvement?

15.057 Spring 03 Vande Vate 4

Add Stronger Constraints

Bands
Coils

Bands Limit

Coils Limit

Production Capacity

Valid Constraint:
Cuts off Fractional Answers
But not Integral Answers

3

2

1

1 2 3 4

15.057 Spring 03 Vande Vate 5

Adding Stronger Constraints

Formulating Current Constraints Better
More constraints are generally better
Use parameters carefully

Creating new constraints that help
Some examples

15.057 Spring 03 Vande Vate 6

More is Better

X, Y, Z binary
Which is better?

Formulation #1

X + Y ≤ 2Z

Formulation #2
X ≤ Z
Y ≤ Z

15.057 Spring 03 Vande Vate 7

Add Stronger Constraints

Bands
Coils

Bands Limit

Coils Limit

Production Capacity

Valid Constraint:
Cuts off Fractional Answers
But not Integral Answers

3

2

1

1 2 3 4

15.057 Spring 03 Vande Vate 8

Adapted from Winston pages 473 and following

Lockbox Example

15.057 Spring 03 Vande Vate 9

City Sea. Chi. NY LA Daily Payments
NW 2 5 5 4 325,000$

N 4 2 4 6 475,000$
NE 5 5 2 8 300,000$

SW 4 6 8 2 275,000$
S 6 6 6 4 385,000$

SE 8 8 5 5 350,000$
Oper.Cost 55,000$ 50,000$ 60,000$ 53,000$

Int. Rate 6.0%
City Sea. Chi. NY LA Total Total Float
NW 0 0 -$

N 0 0 0 0 -$
NE 0 0 -$

SW 0 0 -$
S 0 0 0 0 -$

SE 0 0 -$
Total 0 0 0 0 Total Float -$

Open? 0 0 0 0 Total Cost to Operate
Cost -$ -$ -$ -$ -$

Eff. Cap. 0
Total Cost -

Days to Mail from Each Area to Each City
Lockbox Model

0 0 0
0

0 0 0
0 0 0

0
0 0 0

0 0 0

Challenge
Improve the formulation

City Sea. Chi. NY LA Daily Payments
NW 2 5 5 4 325,000$

N 4 2 4 6 475,000$
NE 5 5 2 8 300,000$

SW 4 6 8 2 275,000$
S 6 6 6 4 385,000$

SE 8 8 5 5 350,000$
Oper.Cost 55,000$ 50,000$ 60,000$ 53,000$

Int. Rate 6.0%
City Sea. Chi. NY LA Total Total Float
NW 0 0 -$

N 0 0 -$
NE 0 0 -$

SW 0 0 -$
S 0 0 -$

SE 0 0 -$
Total 0 0 0 0 Total Float -$

Open? 0 0 0 0 Total Cost to Operate
Cost -$ -$ -$ -$ -$

Eff. Cap. 0
Total Cost -

Days to Mail from Each Area to Each City
Lockbox Model

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0

Conclusion

Formulation #1
Assign[NW, b] +Assign[N, b] + Assign[NE, b] +
Assign[SW, b] +Assign[S, b] + Assign[SE, b]
≤ 6*Open[b]

Formulation #2
Assign[NW,b] ≤ Open[b]
Assign[N, b] ≤ Open[b]
…

Don’t aggregate or sum constraints

15.057 Spring 03 Vande Vate 11

One Step Further

Impose Constraints at Lowest Level
Some Compromise between

Number of Constraints: How hard to solve LPs
Number of LPs: How many LPs we must solve.

Generally, better to solve fewer LPs.

15.057 Spring 03 Vande Vate 12

Adapted from Moore et al pages 300 and following

Steco Revisited

13

Steco's Warehouse Location Model
Unit Costs Lease

Warehouse ($) 1
A 7,750$ 170$ $ 70$ 160$
B 4,000$ 150$ $ $ $
C 5,500$ 100$ $ $ $

Decisions Yes/No 1 Total
Eff.

Cap. Cap.
Lease A 0 0 0 0 0 0 0 200
Lease B 0 0 0 0 0 0 0 250
Lease C 0 0 0 0 0 0 0 300

Total TrucksTo 0
Demand (Trucks/Mo) 100 90 110 60

Lease
Cost To 1 o 2 o 3 o 4

Truck
$

Total
Cost

A $ -$ -$ -$ -$ -$ -$
B $ -$ -$ -$ (0)$ (0)$ (0)$
C $ -$ -$ 0$ -$ 0$ 0$

Totals -$ -$ -$ 0$ (0)$ 0$ 0$

Monthly Trucks From/To

Unit Cost/Truck to Sales District
4 3 2

40
195 100 10
240 140 60

4 3 2

0 0 0

T T T
-
-
-

Challenge
Improve the formulation

Steco's Warehouse Location Model
Unit Costs Lease

Warehouse ($) 1
A ,750$ 170$ $ 70$ 160$
B ,000$ 150$ $ $ $
C ,500$ 100$ $ $ $

Decisions Yes/No 1 Total
Eff.

Cap. Cap.
Lease A 0 0 0 0 200
Lease B 0 0 0 0 250
Lease C 0 0 0 0 300

Total TrucksTo 0
Demand (Trucks/Mo) 100 90 110 60

Lease
Cost To 1 o 2 o 3 o 4

Truck
$

Total
Cost

A $ -$ -$ -$ -$ -$ -$
B $ -$ -$ -$ (0)$ (0)$ (0)$
C $ -$ -$ 0$ -$ 0$ 0$

Totals -$ -$ -$ 0$ (0)$ 0$ 0$

Monthly Trucks From/To

Unit Cost/Truck to Sales District
4 3 2

7 40
4 195 100 10
5 240 140 60

4 3 2
0 0 0
0 0 0
0 0 0
0 0 0

T T T
-
-
-

More Detailed Constraints

s.t. ShutWarehouse{w in WAREHOUSES}:
sum{d in DISTRICTS} Ship[w,d] <= Capacity[w]*Open[w];

s.t. ShutLanes{w in WAREHOUSES, d in DISTRICTS}:
Ship[w,d] <= Demand[d]*Open[w];

Trade off between work to solve each LP and
number of LPs we have to solve
This makes each one harder, but we solve
fewer.

15.057 Spring 03 Vande Vate 15

Tighten Bounds

Function of Continuous Variables <= Limit*Binary
Variable
Make the Limit as small as possible
But not too small
Don’t eliminate feasible solutions
We will see an Example with Ford Finished Vehicle
Dist.

15.057 Spring 03 Vande Vate 16

New Constraints

Recall the Single Sourcing Problem

15.057 Spring 03 Vande Vate 17

Constraints

s.t. ObserveCapacity{dc in DCS}:
sum{cust in CUSTOMERS}
Demand[cust]*Assign[dc,cust] <= Capacity[dc];

Example: x1, x2, x3, x4, x5, x6 binary
5x1 + 7x2 + 4x3 + 3x4 +4x5 + 6x6 ≤ 14
What constraints can we add?

x1 + x2 + x3 ≤ 2
x1 + x2 + x6 ≤ 2
…

15.057 Spring 03 Vande Vate 18

Non-Linear Costs

Mid-Range Cost/Unit High-Range Cost/Unit

To
ta

l C
os

t

Minimum
Sustainable

Level

Low
R ang

e Cost
/U

nit

First
Break
Point

Second
Break
Point

Maximum
Operating

Level

Shutdown Cost

Fixed Cost

0 Volume of Activity
15.057 Spring 03 Vande Vate 19

Modeling Economies of Scale

Linear Programming
Greedy

Takes the High-Range Unit Cost first!

Integer Programming
Add constraints to ensure first things first
Several Strategies

15.057 Spring 03 Vande Vate 20

Good News!

AMPL offers syntax to “automate” this
Read Chapter 14 of Fourer for details
<<BreakPoint[1], BreakPoint[2]; Slope[1],
Slope[2], Slope[3]>> Variable;

Slope[1] before BreakPoint[1]

Slope[2] from BreakPoint[1] to BreakPoint[2]

Slope[3] after BreakPoint[2]

Has 0 cost at activity 0

15.057 Spring 03 Vande Vate 21

Summary

To control complexity and get solutions
Eliminate unnecessary binary variables
Don’t aggregate constraints
Add strong valid constraints
Tighten bounds

Integer Programming Models can

approximate non-linear objectives

15.057 Spring 03 Vande Vate 22

Convex Combination
Weighted Average

To
ta

l C
os

t

0

First
Break
Point

Second
Break
Point

10 20

$22

$27

What will
the cost
be?

1/5th of the way

15.057 Spring 03 Vande Vate 23

Conclusion

If the Volume of Activity is a fraction λ of
the way from one breakpoint to the next,
the cost will be that same fraction of the
way from the cost at the first breakpoint
to the cost at the next
If Volume = 10λ + 20(1-λ)
Then Cost = 22λ + 27(1-λ)

15.057 Spring 03 Vande Vate 24

Idea

Express Volume of Activity as a Weighted
Average of Breakpoints
Express Cost as the same Weighted
Average of Costs at the Breaks
Activity = Min Level λ0 + Break 1 λ1 +

Break 2 λ2 + Max Level λ3

Cost = Cost at Min Level λ0 + Cost at Break 1 λ1 +
Cost at Break 2 λ2 + Cost at Max Level λ3

1 = λ0 + λ1 + λ2 + λ3

15.057 Spring 03 Vande Vate 25

In AMPL Speak
param NBreaks;
param BreakPoint{0..NBreaks};

param CostAtBreak{0..NBreaks};

var Lambda{0..NBreaks} >= 0;

var Activity;

var Cost;

s.t. DefineCost:

Cost = sum{b in 0..NBreaks} CostAtBreak[b]*Lambda[b];

s.t. DefineActivity:

Activity = sum{b in 0..NBreaks} BreakPoint[b]*Lambda[b];

s.t. ConvexCombination:

1 = sum{b in 0..NBreaks}Lambda[b];

15.057 Spring 03 Vande Vate 26

Does that Do It?

What can go wrong?

To
ta

l C
os

t

Minimum
Sustainable

Level

Low
R ang

e Cost
/U

nit

First
Break
Point

Second
Break
Point

Maximum
Operating

Level

X

Mid-Range Cost/Unit High-Range Cost/Unit

0 Volume of Activity
15.057 Spring 03 Vande Vate 27

Role of Integer Variables
To

ta
l C

os
t

Ensure we express Activity as a
combination of two consecutive
breakpoints
var InRegion{1..NBreaks} binary;

Minimum
Sustainable

Level

First
Break
Point

Second
Break
Point

Maximum
Operating

Level

InRegion[1] InRegion[2] InRegion[3]

0

15.057 Spring 03 Vande Vate 28

Constraints

Lambda[2] = 0 unless activity is between

BreakPoint[1] and BreakPoint[2] (Region[2]) or
BreakPoint[2] and BreakPoint[3] (Region[3])

Lambda[2] ≤ InRegion[2] + InRegion[3];

Minimum
Sustainable

Level

First
Break
Point

Second
Break
Point

Maximum
Operating

Level

InRegion[1] InRegion[2] InRegion[3] To
ta

l C
os

t

BreakPoint[0] BreakPoint[1] BreakPoint[2] BreakPoint[3]
15.057 Spring 03 Vande Vate 29

And Activity in One Region

InRegion[1] + InRegion[2] + InRegion[3] ≤ 1

Why ≤ 1?

If it is in Region[2]:

Lambda[1] ≤ InRegion[1] + InRegion[2] = 1

Lambda[2] ≤ InRegion[2] + InRegion[3] = 1

Other Lambda’s are 0

15.057 Spring 03 Vande Vate
 30

We can’t go wrong

Minimum
Sustainable

Level

Low
R ang

e Cost
/U

nit

First
Break
Point

Second
Break
Point

Maximum
Operating

Level

X

Mid-Range Cost/Unit High-Range Cost/Unit

0 Volume of Activity

15.057 Spring 03 Vande Vate 31

AMPL Speak

param NBreaks;
param BreakPoint{0..NBreaks};
param CostAtBreak{0..NBreaks};

var Lambda{0..NBreaks} >= 0;

var Activity;

var Cost;

s.t. DefineCost:

Cost = sum{b in 0..NBreaks} CostAtBreak[b]*Lambda[b];

s.t. DefineActivity:

Activity = sum{b in 0..NBreaks} BreakPoint[b]*Lambda[b];

s.t. ConvexCombination:

1 = sum{b in 0..NBreaks}Lambda[b];

15.057 Spring 03 Vande Vate 32

What we Added

var InRegion{1..NBreaks} binary;
s.t. InOneRegion:
sum{b in 1..NBreaks} InRegion[b] <= 1;

s.t. EnforceConsecutive{b in 0..NBreaks-1}:
Lambda[b] <= InRegion[b] + InRegion[b+1];

s.t. LastLambda:
Lambda[NBreaks] <= InRegion[NBreaks];

15.057 Spring 03 Vande Vate 33

