
Non-Linear Optimization 

Distinguishing Features 
Common Examples 

EOQ 
Balancing Risks 

Minimizing Risk 
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Hierarchy of Models 

Network Flows 

Linear Programs 
Mixed Integer Linear Programs 
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A More Academic View 

Network Flows 

Linear Programs 
Convex Optimization 

Mixed Integer 
Linear 

Programs Non-Convex Optimization 
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A More Academic View 

Networks & Linear Models 

Convex Optimization 

Integer Models 
Non-Convex Optimization 



Convexity 
The Distinguishing Feature


Separates Hard from Easy


Convex Combination 
Weighted Average 

Non-negative weights 
Weights sum to 1 
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Convex Functions 

The 
function 
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below 
the line 
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What’s “Easy” 

Find the minimum of a Convex Function


A local minimum is a global minimum 
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Convex Set


A set S is CONVEX if every convex 
combination of points in S is also in S 
The set of points above a convex function
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What’s “Easy” 

Find the minimum of a Convex 

Set 
Function over (subject to) a Convex 
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Concave Function 
Concave Function 

The 
function 
lies 
ABOVE 
the line 
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What’s “Easy” 

Find the maximum of a Concave 

Set. 
Function over (subject to) a Convex 
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Academic Questions 

Is a linear function convex or concave? 
Do the feasible solutions of a linear 
program form a convex set? 

program form a convex set? 

12 

Do the feasible solutions of an integer 
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Ugly - Hard
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Integer Programming is “Hard” 

Bands 
Coils 

Bands Limit 

Coils Limit 

Production Capacity 

Why? 
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Review


Convex Optimization 
Convex (min) or Concave (max) objective 
Convex feasible region 

Non-Convex Optimization 
Stochastic Optimization 

Incorporates Randomness 
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Agenda


Convex Optimization 
Unconstrained Optimization 
Constrained Optimization 

Non-Convex Optimization 
Convexification 
Heuristics 
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Convex Optimization 

Unconstrained Optimization 
If the partial derivatives exist (smooth) 

find a point where the gradient is 0 

Otherwise (not smooth) 
find point where 0 is a subgradient 
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Unconstrained Convex 
Optimization 

Smooth 
Find a point where the Gradient is 0 
Find a solution to ∇f(x) = 0 

Analytically (when possible) 
Iteratively otherwise 
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Solving ∇f(x) = 0 

Newton’s Method 
Approximate using gradient 
∇f(y) ≈ ∇f(x) + ½(y-x)tHx(y-x) 
Computing next iterate involves inverting Hx 

Quasi-Newton Methods 
Approximate H and update the approximation 
so we can easily update the inverse 
(BFGS) Broyden, Fletcher, Goldfarb, Shanno
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Line Search


Newton/Quasi-Newton Methods yield 
direction to next iterate 
1-dimensional search in this direction


Several methods 
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Unconstrained Convex 

Optimization 

Non-smooth 
Subgradient Optimization 
Find a point where 0 is a subgradient 
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What’s a Subgradient 

f(y) = f(x) - 2(y-x) 

x 

a 0 is a subgradient if and only if ... 
1 ≥ γx ≥ -2 

f(y) = f(x) + (y-x) 

Like a gradient 
f(y) ≥ f(x) +γx(y-x) 

f(x) is a minimum point 



Steepest Descent 

If 0 is not a subgradient at x, subgradient 
indicates where to go 

Direction of steepest descent 

Find the best point in that direction 
line search 
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Examples 

EOQ Model 
Balancing Risk 
Minimizing Risk 
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EOQ


How large should each order be


Trade-off 
Cost of Inventory (known) 
Cost of transactions (what?) 

Larger orders 
Higher Inventory Cost 
Lower Ordering Costs 
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The Idea 

Increase the order size until the 
incremental cost of holding the last item 
equals the incremental savings in ordering 
costs 
If the costs exceed the savings? 
If the savings exceed the costs? 
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Modeling Costs 
Q is the order quantity 
Average inventory level is 

Q/2 
h*c is the Inv. Cost. in $/unit/year 
Total Inventory Cost 

h*c*Q/2 
Last item contributes what to inventory 
cost? 

h*c/2 
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Modeling Costs 
D is the annual demand 
How many orders do we place? 

D/Q 

Transaction cost is A per transaction 
Total Transaction Cost 

AD/Q 
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Total Cost 
Total Cost = h*cQ/2 + AD/Q


Total Cost 
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Incremental Savings 
What does the last item save? 
Savings of Last Item 

AD/(Q-1) - AD/Q 
[ADQ - AD(Q-1)]/[Q(Q-1)] ~ AD/Q2 

Order up to the point that extra carrying 
costs match incremental savings 

h*c/2 = AD/Q2 

Q2 = 2AD/(h*c) 
Q = √2AD/(h*c) 
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Key Assumptions? 

Known constant rate of demand 
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Value?


No one can agree on the ordering cost

Each value of the ordering cost implies


A value of Q from which we get 
An inventory investment c*Q/2 
A number of orders per year: D/Q 

Trace the balance for each value of 
ordering costs 
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The EOQ Trade off

Known values 

Annual Demand D 
Product value c 
Inventory carrying percentage h 

Unknown transaction cost A 
For each value of A 

Calculate Q = √2AD/(h*c) 
Calculate Inventory Investment cQ/2 
Calculate Annual Orders D/Q 
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The Tradeoff Benchmark

EOQ Trade off 
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Balancing Risks 
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Variability 
Some events are inherently variable 

When customers arrive

How many customers arrive

Transit times

Daily usage 

Stock Prices

...


Hard to predict exactly 
Dice 
Lotteries 
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Random Variables 
Examples 

Outcome of rolling a dice 
Closing Stock price 
Daily usage 
Time between customer arrivals 
Transit time 
Seasonal Demand 
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Distribution 
The values of a random variable and their 
frequencies 
Example: Rolling 2 Fair Die 

34 

33 43 44 

32 42 52 53 54 

22 23 24 25 35 45 55 

21 31 41 51 61 62 63 64 65 

11 12 13 14 15 16 26 36 46 56 66 
Number  of  Outcomes 1 2 3 4 5 6 5 4 3 2 1 
Fraction of Outcomes 0.028 0.056 0.083 0.111 0.139 0.167 0.139 0.111 0.083 0.056 0.028 
Value 2 3 4 5 6 7 8 9 10 11 12 
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Theoretical vs Empirical 

Empirical Distribution 
Based on observations 

Value 2 3 4 5 6 7 8 9 10 11 12 
Number of Outcomes 1 2 1 5 3 9 8 3 3 1 -
Fraction of Outcomes 0.03 0.06 0.03 0.14 0.08 0.25 0.22 0.08 0.08 0.03 -

Theoretical Distribution 
Based on a model 

Value 2 3 4 5 6 7 8 9 10 11 12 
Fraction of Outcomes 0.03 0.06 0.08 0.11 0.14 0.17 0.14 0.11 0.08 0.06 0.03 
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Empirical vs Theoretical 

One Perspective: If the die are fair 
and we roll many many times, 
empirical should match theoretical. 
Another Perspective: If the die are 
reasonably fair, the theoretical is close 
and saves the trouble of rolling.
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Empirical vs Theoretical 
The Empirical Distribution is flawed 
because it relies on limited 
observations 
The Theoretical Distribution is 
flawed because it necessarily 
ignores details about reality 
Exactitude? It’s random. 
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Continuous vs Discrete 

Discrete 
Value of dice 
Number of units sold 
… 

Continuous 
Essentially, if we measure it, it’s discrete 
Theoretical convenience 
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Probability 
Discrete: What’s the probability we roll a 
12 with two fair die: 

1/36 
Continuous: What’s the probability the 
temperature will be exactly 72.00o F 
tomorrow at noon EST? 

Zero! 
Events: What’s the probability that the 
temperature will be at least 72o F 
tomorrow at noon EST? 
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Continuous Distribution 
Standard Normal Distribution 
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Total Probability 
Empirical, Theoretical, Continuous, 
Discrete, … 
Probability is between 0 and 1


Total Probability (over all possible 

outcomes) is 1
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Summary Stats 
The Mean 

Weights each outcome by its 
probability 
AKA 

Expected Value 
Average 

May not even be possible 
Example: 

Win $1 on Heads, nothing on Tails 
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Summary Stats 
The Variance 

Measures spread about the mean 
How unpredictable is the thing

Nomal Distributions with Different Variances 

0.45 

0.4 

0.35 

0.3 

0.25Which would you rather manage? 
0.2 

0.15 

0.1 

Variance 1 

Variance 9 
0.05 

0 
-10 -8 -6 -4 -2 0 2 4 6 8 10 

15.057 Spring 03 Vande Vate 47 



Variance 
Nomal Distributions with Different Variances 
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Std. Deviation

Variance is measured in units squared 

Think sum of squared errors 
Standard Deviation is the square root


It’s measured in the same units as the 
random variable 

The two rise and fall together 
Coefficient of Variation 

Standard Deviation/Mean 
Spread relative to the Average 
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Balancing Risk 
Basic Insight 
Bet on the outcome of a variable process 
Choose a value 

You pay $0.5/unit for the amount your bet 
exceeds the outcome 
You earn the smaller of your value and the 
outcome 

Question: What value do you choose? 
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Similar to...


Anything you are familiar with?
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The Distribution

Distribution 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

Mean 
Std. Dev. 1 

5 

0 
0 2 4 6 8 10 12 

15.057 Spring 03 Vande Vate 52 



The Idea 

Balance the risks 
Look at the last item 

What did it promise? 
What risk did it pose? 

If Promise is greater than the risk?


If the Risk is greater than the 
promise? 
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Measuring Risk and Return 
Revenue from the last item 

$1 if the Outcome is greater,$0 otherwise 

Expected Revenue 
$1*Probability Outcome is greater than our choice 

Risk posed by last item 
$0.5 if the Outcome is smaller, $0 otherwise 

Expected Risk 
$0.5*Probability Outcome is smaller than our choice 
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Balancing Risk and Reward 
Expected Revenue 

$1*Probability Outcome is greater 
than our choice 

Expected Risk 
$0.5*Probability Outcome is smaller 
than our choice 

How are probabilities Related? 
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Risk & Reward

Distribution 
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Balance

Expected Revenue 

$1*(1- Probability Outcome is smaller than our 
choice) 

Expected Risk 
$0.5*Probability Outcome is smaller than our choice 

Set these equal 
1*(1-P) = 0.5*P

1 = 1.5*P

2/3 = P = Probability Outcome is smaller than our choice
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Making the Choice 
Distribution 
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Constrained Optimization 

Feasible Direction techniques


Eliminating constraints 
Implicit Function 
Penalty Methods 

Duality 
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Feasible Directions


Unconstrained OptimizationX 
Start at a point: x0 

Identify an^ improving direction: d
Feasible

Find a best ^ solution in direction d: x + εd 
FeasibleRepeat 

A Feasible direction: one you can move in

A Feasible solution: don’t move too far. 
Typically for Convex feasible region 
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Constrained Optimization 

Penalty Methods 
Move constraints to objective with penalties 

or barriers 

As solution approaches the constraint the penalty 
increases 
Example: 

min f(x) => min f(x) + t/(3x - x2) 
s.t. x2 ≤ 3x 

as x2 approaches 3x, penalty increases rapidly 
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Relatively reliable tools for 

Quadratic objective 
Linear constraints 
Continuous variables 
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Summary 
“Easy Problems” 

Convex Minimization 
Concave Maximization 

Unconstrained Optimization 
Local gradient information 

Constrained problems 
Tricks for reducing to unconstrained or simply 
constrained problems 

NLP tools practical only for “smaller” problems
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