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Questions: i) How to relate advertising expenditure to sales? 
ii) What is expected first-year sales if advertising 

expenditure is $2.2 million? 
iii) How confident are you in your estimate? 

Does Advertising Increase Sales? 
Appleglo First-Year 

Advertising 
Expenditures 

($ millions) 

First-Year 
Sales 

($ millions) 

Region x y 

Maine 1.8 104 
New Hampshire 1.2 68 

Vermont 0.4 39 
Massachusetts 0.5 43 

Connecticut 2.5 127 
Rhode Island 2.5 134 

New York 1.5 87 
New Jersey 1.2 77 

Pennsylvania 1.6 102 
Delaware 1.0 65 
Maryland 1.5 101 

West Virginia 0.7 46 
Virginia 1.0 52 

Ohio 0.8 33 
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GOAL: Develop a formula that relates two quantities 

x: “independent” (also called “explanatory”) variable 
quantity typically under managerial control 

Y: “dependent” variable 
magnitude is determined (to some degree) by value of x 
quantity to be predicted 

Y 
(dependent variable) 

X 
(independent variable) 

College GPA SAT score 

Lung cancer rate Amount of cigarette smoking 

Stock return Spending in R&D 

First-year sales Advertising expenditures 

Examples: 

Regression Analysis 
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Outline 

• Simple Linear Regression 

• Multiple Regression 

• Understanding Regression Output 

• Coefficient of Determination R2 

• Validating the Regression Model 
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The Basic Model: Simple Linear Regression 
Data: (x1, y1), (x2, y2), . . . , (xn, yn) (a sample of size n taken from the 
population of all (X,Y) values) 

Model of the population*: Yi = E�0 + E1 xi + H�i 
Comments: 

� The model assumes a linear relationship between x and Y, with y intercept E0 

and slope E1 

� E0 and E1 are the parameters for the whole population. We do not know them 
and will estimate them using b0 and b1 to be calculated from the data (i.e. from 
the sample of size n) 

� Hi is the called the error term. Since the Y’s do not fall precisely on the line (i.e. 
they are r.v.’s) we need to add an error term to obtain an equality. 

� Hi is N(0, V�). Thus, H1, H2, . . . , H n are i.i.d. Normally distributed r.v.’s. 

� E (Yi | xi) = E�0 + E�1x i Is the expected value of Y for a given x value. It is just 
the value on the line as that is where on average the Yi value would fall for a 
given xi value. 

� SD(Yi | xi) = V� Notice that The SD of Yi is equal to the SD of Hi and is a 
constant independent of the value of x. 
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How do we choose the line that “best” fits the data? 

The “best” regression line is the one that chooses b0 and b1 to minimize the total 
squared errors: 

SSR is the residual sum of squares, analogous to a variance calculation 

Regression coefficients: b0 and b1 are estimates of E0 and E1 
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bo =13.82 

Slope b1 = 48.60 

(xi, yi) 

ei 

(xi, yi) 
^ 

Best choices: 
bo = 13.82 
b1 = 48.60 

Regression estimate for Y at xi : yi = b0 + b1xi (prediction) ^ 

Residual (error): ei = yi - yi 
^ 

6i=1 

n 
SSR = ei = 6i=1 

n
2 (yi - )2yi 

^ 

Value of Y at xi : yi = b0 + b1xi + ei (use the error to obtain equality) 
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How Good a Fit to the Line?How Good a Fit to the Line?
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• It is a measure of the overall quality of the regression. 
Specifically, it is the percentage of total variation exhibited in the yi data 
that is accounted for or predicted by the sample regression line. 

Coefficient of Determination: R2 

6i=1 

n 
(yi - )2y 

_ 
- Total variation in Y = 

- The sample mean of Y: y = (y1 + y2 + . . . + yn)/ n 
_ 

- Residual (unaccounted) variation in Y 6i=1 

n 
= ei = 6i=1 

n
2 (yi - )2yi 

^ 

R2 = 
variation accounted for by x variables 

total variation 

variation not accounted for by x variables 

total variation 
= 1 -

(even the linear model, yi , does not explain all the the variability in yi) 

= 1 -
6i=1 

n 
(yi - )2yi 

^ 

6i=1 

n 
(yi - )2y 

_ 

^ 
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R2 takes values between 0 and 1 
(it is a percentage). 
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R2 = 0.833 in our 
Appleglo Example 
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Correlation and RegressionCorrelation and Regression

Simple regression is correlation in disguiseSimple regression is correlation in disguise

Coefficient of Determination = squaredCoefficient of Determination = squared 

correlation coefficientcorrelation coefficient

Regression coefficient:Regression coefficient: bb11 = correlation *= correlation * ssyy/s/sxx

ApplegloAppleglo:: Sales = 13.82 + 48.60 * AdvertisingSales = 13.82 + 48.60 * Advertising

The coefficients are in units of sales andThe coefficients are in units of sales and 

advertising. If advertising is $2.2 Million, thenadvertising. If advertising is $2.2 Million, then 

sales will be 13.82 + 48.60 * 2.2 = $120.74 Msales will be 13.82 + 48.60 * 2.2 = $120.74 M

What if there are >1 predictor variable?What if there are >1 predictor variable?
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region sales advertising promotions competitor’s
 sales 

Selkirk 101.8 1.3 0.2 20.40 
Susquehanna 44.4 0.7 0.2 30.50 
Kittery 108.3 1.4 0.3 24.60 
Acton 85.1 0.5 0.4 19.60 
Finger Lakes 77.1 0.5 0.6 25.50 
Berkshire 158.7 1.9 0.4 21.70 
Central 180.4 1.2 1.0 6.80 
Providence 64.2 0.4 0.4 12.60 
Nashua 74.6 0.6 0.5 31.30 
Dunster 143.4 1.3 0.6 18.60 
Endicott 120.6 1.6 0.8 19.90 
Five-Towns 69.7 1.0 0.3 25.60 
Waldeboro 67.8 0.8 0.2 27.40 
Jackson 106.7 0.6 0.5 24.30 
Stowe 119.6 1.1 0.3 13.70 

Sales of Nature-Bar ($ million) 

x1 x2 x3Y 
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Multiple Regression 
• In general, there are many factors in addition to advertising 

expenditures that affect sales 

Independent variables: x1, x2, . . . , xk (k of them) 

Data: (y1, x11, x21, . . . , xk1), . . . , (yn1, xn1, xn2, . . . , xkn), 

Population Model: Yi = E0 + E1x1i + . . . + Ekxki + H�i 
H�1, H�2, . . . , H�n are i.i.d random variables, ~ N(0, V) 

Goal: Choose b0, b1, ... , bk to minimize the residual sum of 

squares. i.e., minimize: 

6i=1 

n 
SSR = ei = 6i=1 

n
2 (yi - )2yi 

^ 

Regression Estimate of yi : yi = b0 + b1x1i + . . . + bkxki 
^ 

Regression coefficients: b0, b1,…, bk are estimates of E0, E1,…, Ek . 

• Multiple regression allows more than one independent variable 
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Regression Output (from Excel) 
Regression Statistics 

Multiple R 0.913 

R Square 0.833 

Adjusted R Square 0.787 

Standard Error 17.600 

Observations 15 

Analysis of 

Variance 

df Sum of 

Squares 

Mean 

Square 

F Significance 

F 

Regression 3 16997.537 5665.85 18.290 0.000 

Residual 11 3407.473 309.77 

Total 14 20405.009 

Coefficients Standard 
Error 

t 

Statistic 

P-

value 

Lower 

95% 

Upper 

95% 

Intercept 65.71 27.73 2.37 0.033 4.67 126.74 

Advertising 48.98 10.66 4.60 0.000 25.52 72.44 

Promotions 59.65 23.63 2.53 0.024 7.66 111.65 

Competitor’s 
Sales 

-1.84 0.81 -2.26 0.040 -3.63 -0.047 

Standard 
error s: an 
estimate of V� 

s2 estimate 
of variance 
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b1 = 48.979 (an additional $1 million in advertising is 
expected to result in an additional $49 million in sales) 

1) Regression coefficients: b0, b1, . . . , bk are estimates 

of E0, E1, . . . , Ek based on sample data. Fact: E[bj ] =Ej �� 
(i.e., if we run the multiple regression many many times, the average value of the 
bj’s we get is Ej) 

b2 = 59.654 (an additional $1 million in promotions is 
expected to result in an additional $60 million in sales) 

Example: 
b0 = 65.705 (its interpretation is context dependent, in this case, 

sales if no advertising, no promotions, and no competition) 

b3 = -1.838 (an increase of $1 million in competitor sales 
is expected to decrease sales by $1.8 million) 

Understanding Regression Output 
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2) Standard error s: an estimate of V�, the SD of each H�i. 
It is a measure of the amount of “noise” in the model. 

Example: s = 17.60 

4) Standard errors of the coefficients: sb0 
, sb1 

, . . . , sbk 

They are just the standard deviations of the estimates 

b0 , b1, . . . , bk. 

They are useful in assessing the quality of the coefficient 

estimates and validating the model. (Explained later). 

3) Degrees of freedom: to be explained later. 

Understanding Regression Output, Continued 
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• How high a R2 is “good” enough depends on the situation 
(for example, the intended use of the regression, and 
complexity of the problem). 

• Users of regression tend to be fixated on R2, but it’s not the 
whole story. It is important that the regression model is “valid.” 

Coefficient of Determination: R2 

• A high R2 means that most of the variation we observe in 
the yi data can be attributed to their corresponding x values 

���a desired property. 

• In multiple regression, R is called “Multiple R” 

• In simple regression, the R2 is higher if the data points are 
better aligned along a line. The corresponding picture in multiple 
regression is a plot of predicted yi vs. the actual yi data. 

^ 
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Caution about R2 

• One should not include x variables unrelated to Y in the model, 
just to make the R2 fictitiously high. New x variables will 
account for some additional variance by chance alone 
(“fishing”), but these would not be validated in new samples. 

• Adjusted R2 modifies R2 to account for the number of variables 
and the sample size, therefore counteracting “fishing”: 

Adjusted RAdjusted R
22

== 11 ––
(n – 1)  

[n – (k + 1)] 
(1 – R 

2
) 

Rule of thumb: n >= 5(k+2) where n = sample size 
and k = number of predictor variables 
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Validating the Regression Model 

Assumptions about the population: 

Yi = b0 + b1x1i + . . . + bkxki + Hi (i = 1, . . . , n) 

H�1, H�2, . . . , H�n are i.i.d random variables, ~ N(0, V) 

2) Normality of H i 

• Plot the residuals (ei = yi - ). 
• They should look evenly random – i.e. scattered. 
• Then plot a histogram of the residuals. The resulting distribution should be 

approximately normal. 
Usually, results are fairly robust with respect to this assumption. 

yi 
^ 

1) Linearity 

• If k = 1 (simple regression), one can check visually from scatter plot. 

• “Sanity check”: the sign of the coefficients, reason for non-linearity? 
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Residual PlotsResidual Plots

0 X 

0 X 

Nonlinear 
Can 
sometimes 
be fixed, e.g., 
Insert x2 as a 
variable. 

Healthy 
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3) Heteroscedasticity 

• Do error terms have constant Std. Dev.? (i.e., SD(Hi ) = V�for all i?) 

• Check scatter plot of residuals vs. Y and x variables. 

Advertising 
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Advertising Expenditures 

-20.00 

-10.00 

0.00 

10.00 
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No evidence of heteroscedasticity 

• May be fixed by introducing a transformation (e.g. use x2 instead of x) 

• May be fixed by introducing or eliminating some independent variables 

Evidence of heteroscedasticity 

Residuals Residuals 
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4) Autocorrelation: Are error terms independent? 

- Plot residuals in order and check for patterns 

No evidence of autocorrelation 

• Autocorrelation may be present if observations have a natural 
sequential order (for example, time). 

• May be fixed by introducing a variable (frequently time) or transforming 
a variable. 

Evidence of autocorrelation 

Time Plot 

-6 

-4 

-2 

0 

2 

4 

6 

0 5 10 15 20 

R
 e

s
id

u
a

l 

Time Plot 

-4 

-2 

0 

2 

4 

6 

0 5 10 15 20 

R
e

s
id

u
a

l 



15.063 Summer 200315.063 Summer 2003 2222

Validating the Regression Model:Validating the Regression Model:

AutocorrelationAutocorrelation

Evidence of Autocorrelation in SimpleEvidence of Autocorrelation in Simple 
Regression in Toothpaste monthlyRegression in Toothpaste monthly 

sales and promotionssales and promotions

Residuals 
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DecemberDecember252562.9362.93

NovemberNovember222267.6167.61

OctoberOctober434375.7175.71

SeptemberSeptember42.142.170.3670.36

AugustAugust24.124.164.0664.06

JulyJuly24.324.364.4164.41

JuneJune24.724.763.7163.71

MayMay25.125.168.6268.62

AprilApril424274.3474.34

MarchMarch38.538.569.1869.18

FebruaryFebruary252565.2565.25

JanuaryJanuary262663.0063.00

MonthMonth
PromotionsPromotions

($ Thousands)($ Thousands)

SalesSales

($($

Thousands)Thousands)
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Graphs of NonGraphs of Non--independentindependent

Error Terms (Autocorrelation)Error Terms (Autocorrelation)

0 X 0 X

Possible solution: Insert time (sequence) of observation 
as a variable.
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1) Overspecification 

• Including too many x variables to make R2 fictitiously high. 

• Rule of thumb: we should maintain that n >= 5(k+2) 

Pitfalls and Issues 

2) Extrapolating beyond the range of data (Carter Racing!!) 
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3) Multicollinearity 

• Occurs when two of the x variable are strongly correlated. 

• Can give very wrong estimates for Ei’s. 

• Tell-tale signs: 

- Regression coefficients (bi’s) have the “wrong” sign. 

- Addition/deletion of an independent variable results in 
large changes of regression coefficients 

- Regression coefficients (bi’s) not significantly different from 0 

• May be fixed by deleting one or more independent variables 

Pitfalls and Issues 
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Can We Predict Graduate GPA from College GPA and GMAT? 

Student Graduate College 
Number GPA GPA GMAT 

1 4.0 3.9 640 
2 4.0 3.9 644 
3 3.1 3.1 557 
4 3.1 3.2 550 
5 3.0 3.0 547 
6 3.5 3.5 589 
7 3.1 3.0 533 
8 3.5 3.5 600 
9 3.1 3.2 630 

10 3.2 3.2 548 
11 3.8 3.7 600 
12 4.1 3.9 633 
13 2.9 3.0 546 
14 3.7 3.7 602 
15 3.8 3.8 614 
16 3.9 3.9 644 
17 3.6 3.7 634 
18 3.1 3.0 572 
19 3.3 3.2 570 
20 4.0 3.9 656 
21 3.1 3.1 574 
22 3.7 3.7 636 
23 3.7 3.7 635 
24 3.9 4.0 654 
25 3.8 3.8 633 
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R Square 0.96 

Standard Error 0.08 

Observations 25 

Coefficients Standard Error 

Intercept 0.09540 0.28451 

College GPA 1.12870 0.10233 

GMAT -0.00088 0.00092 

College GPA and GMAT 

are highly correlated! 

What happened? 

R Square 0.958 

Standard Error 0.08 

Observations 25 

Coefficients  Standard Error 

Intercept -0.1287 0.1604 

College GPA 1.0413 0.0455 

Eliminate GMAT(HBS?) 

Regression Output 

Graduate College GMAT 

Graduate 1 

College 0.98 1 

GMAT 0.86 0.90 1 
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Checklist for Evaluating a Linear Regression Model 

• Linearity: scatter plot, common sense, and knowing your problem. 

• Signs of Regression Coefficients: do they agree with intuition? 

• Normality: plot residual histogram 

• R2: is it reasonably high in the context? 

• Heteroscedasticity: plot residuals against each x variable 

• Autocorrelation: time series plot 

• Multicollinearity: compute correlations between x variables 

• Statistical test: are the coefficients significantly different from zero? (next 
time) 
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Summary and Look AheadSummary and Look Ahead

Regression is a way to make predictions fromRegression is a way to make predictions from 

one or more predictor variablesone or more predictor variables

There are a lot of assumptions that must beThere are a lot of assumptions that must be 

checked to make sure the regression model ischecked to make sure the regression model is 

validvalid

We may not get toWe may not get to Croq’PainCroq’Pain


