Discrete and Continuous
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Random Variables

@ A random variable is a rule that assigns a numerical
value to each possible outcome of a probabilistic
experiment.

@ We denote a random variable by a capital letter (such as
HX”)

Examples of random variables:

r.v. X: the age of a randomly
selected student here today.

r.v. Y: the number of planes
completed in the past week.
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Discrete or Continuous

M A discrete r.v. can take only distinct, separate
values

— Examples?

@ A continuous r.v. can take any value in some
iInterval (low,high)
— Examples?
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Discrete Random Variables

@ A probabillity distribution for a discrete r.v. X
consists of:

— Possible values X1y Xo « + oy X
— Corresponding probabilities P1, Pos - - -5 Phy

with the interpretation that
P(X=X;) =P, PX=X5) =Py, - ooy PIX=X) = Py
@ Note the following:
— Variable names are capital letters (e.g., X)
— Values of variables are lower case letters (e.g., X,)
— Bachp,0andp, +p,+...+p,=1.0
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Probability tree and probabillity distribution for
r.v. X (total # Heads in experiment 1)
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A histogram is a display of probabilities as a bar chart

r.v. X = number of heads when tossing 3 unbiased coins

Now let’s consider experiment 2. “number of heads when tossing
3 biased coins (p(H) = 0.30)”. Again r.v. X: total number of heads
obtained when performing experiment 2.....
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Probability tree and probabillity distribution for

r.v. X (total # Heads in experiment 2)

Outcome X (#Hs) Probabil

H3
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Histogram for experiment 2
r.v. X = total number of heads when tossing 3 biased
coins with p(H) = 0.30.
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Example 2: Let X be the random variable that denotes the
number of orders for aircraft for next year. Suppose that the
number of orders for aircraft for next year is estimated to obey the
following distribution:

Orders for aircraft next year Probability

X Pi

42 0.05
43 0.10
44 0.15
45 0.20
46 0.25
47 0.15
48 0.10
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A histogram is a display of probabilities as a bar chart

Probability Distribution of the
Number of Orders of Aircraft Next Year
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X and Y denote the sales next year in the eastern division and the western division
of a company, respectively. X and Y obey the following distributions:
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Consider two random variables X, Y, with the following
histograms:
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Random variable X Random variable Y

How do we describe and compare X and Y?
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Summary Statistics for a r.v..: Three important measures

- Mean or Expected Value:
Represents “average” outcome; a measure of “central tendency”

E(X)=py = Zn:P(X =X;)X; = Zn:pixi

- lVariance:
Squared deviation around the mean; a measure of “spread”

Var(X) = 0’x = ip(x = X; )(X; —I»lx)z = ipi(xi _“x)z

- Standard Deviation :

Square root of the variance. A measure of spread in the same units
as the random variable X.

SD(X) =0, =+/0,°

15.063 Summer 2003 13




Example: Let X be the number that comes up on a roll of one die.

=) Compute the mean, variance and standard deviation of X.
Qutcome P(X=x)
1 1/6
2 1/6
3 1/6
4 1/6
) 1/6
6 1/6

= 1/6*1 +1/6 *2 +1/6 *3 + 1/6*4+1/6*5+1/6*6 = 3.5

(GX)Z: 1/6*(1-3.5)2 +1/6 *(2-3.5) 2 +1/6 *(3-3.5) 2 + 1/6 *(4-3.5) 2
+1/6 *(4-3.5) 2 +1/6 *(5-3.5) 2 +1/6 *(6-3.5) 2 = 2.917

O,=Sqr{2.917}= 1.708
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Example 2:

Compute the mean, variance ,standard deviation of

)
X (eastern division sales) and Y (western division sales)

11, =$5.2 mil p, =3$5.25mil

o2 =1.06 mil? o, = 2.3875 mil’

ox =$1.029 mil o, =$1.545mil
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Continuous Random Variables

A continuous random variable can take any value in some interval
Example: X =time a customer spends waiting in line at the store

* “Infinite” number of possible values for the random variable.
How can we describe a probability distribution?
(We can no longer list the p;’s and x;'s!)

e For a continuous random variable, questions are phrased in terms
of a range of values.

Example: We might talk about the event that a customer waits
between 5.0 and 10.0 minutes, and not about the event that a
customer waits exactly 5.25 minutes! (why?)
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Continuous Probability Distributions

H Continuous R.V.’s have continuous probability
distributions known also as the probability density
function (PDF)

B Since a continuous R.V. X can take an infinite
number of values on an interval, the probabillity that a
continuous R.V. X takes any single given value is
zero: P(X=c)=0

@ Probabilities for a continuous RV X are calculated for
a range of values: P (a< X <Db)

# P (a<X<Db)isthe area under

the probability distribution function,

f(x) , for continuous R.V. X.

® The total area under f(x) is 1.0
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The Uniform Distribution

X Is uniform on [a,b] if X is equally likely to take any value in

the range from a to b.

Example: Suppose that transit time of the subway between Alewife
Station and Downtown Crossing is uniformly distributed between
10.0 and 20.0 minutes.

a) What Is the mean transit time?
E(X)=py=7?

b) What is the probability that the transit

time exceeds 12.0 minutes?
P(X>=12.0)="7?

c) What is the probability that the transit

time 1s between 14.0 and 18.0 minutes?

P(14<=X<=18) =7
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Uniform Distribution

@ A continuous R.V. X Is uniform in the interval [a-b]
If it Is equally likely to take any value in the interval
[a,b]. Thus f(x) for a continuous uniform R.V. Is a
horizontal line (i.e., a constant). f(x)=1/(b-a) so
that the area under the curve is 1.0.

for all other values
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Uniform Distribution

@ transit time of the subway between Alewife
Station and Downtown Crossing Is uniformly
distributed between 10.0 and 20.0 minutes.

10<x<20

for all other values

P(X>=12.0) =0.80
P(14<= X <=18) =0.40
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Lot Weights In a Warehouse are Uniformly
distributed Between 41 and 47 Ibs.

41<x<47

for all other values
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What is the probability that the weight of a
randomly selected lot is between 42 and 45 Ibs?

P(42< X <45) = (45—42)% =%

41 42 45 47 X
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Uniform Distribution
Mean and Standard Deviation

Standard Deviation | Standard Deviation

_b-a

V12

_47-41 6

o —=1.732
J12 .

O
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Cumulative Distribution Function (CDF)

t

P(X < t) jf(xﬂR::F(U

ﬁ F(s)=P(X <5s)

P(s< X <t)=P(X <t)=P(X <8)=F(t)=F(s)
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Let X be uniformly distributed on [a,b]. Then density

function of X Is:

for all other values

Find the CDF:

F (x) = jxf(u)du

+ (%)
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Summary

M Discrete and continuous random variables
nave to be understood differently

@ Histograms are very useful for discrete
variables

M Next session we will talk about “binomial”
distributions

@ Uniform continuous random variables are
a good place to start for our later work with
normal distributions etc.
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