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1 Martingale Convergence Theorem
Theorem 1. (Doob) Suppose X,, is a super-martingale which satisfies

SupEHXnH <0

Then, almost surely X, = lim,, X,, exists and is finite in expectation. That is,
define X, = limsup X,,. Then X,, — X a.s. and E[| X »|] < oc.

Proof. The proof relies “Doob’s Upcrossing Lemma”. For that consider

A 2 {w: X,,(w) does not converge to a limit in R}
= {w : liminf X, (w) < limsup X, (w)}
n n

= Ug<biapeq{w : liminf X, (w) < a < b < limsup X,,(w)}, (1)

where Q is the set of rational values. Let, Un|[a, b](w) = largest k such that it
satisfies the following: there exists

0<s1<ti <..<sp<tpy <N



such that
X, (w) <a<b< Xy (w), 1<i<k.

That is, Un][a, b] is the number of up-crossings of [a,b] up to N. Clearly,
Unla,b](w) is non-decreasing in N. Let Us[a, b](w) = limy_o0 Un|[a, b](w).
Then (1) can be re-written as

A= Ua<b:a7be@{w : UOO [av b] (w) = OO}
= Ua<b:a,bEQAa,b' @)

Doob’s upcrossing lemma proves that P(A, ;) = 0 for every a < b. Then we
have from (2) that P(A) = 0. Thus, X,,(w) converges in [—00, cc| a.s. That is,

X = lim X, exists a.s.
n

Now,
E[| Xl|] = E[lin;inﬂXﬂ]
< limninfEHXnH
< sup E[| X, ] < oo,
n
where we have used Fatou’s Lemma in the first inequality. Thus, X is in L.
In particular, X, is finite a.s. This completes the proof of Theorem 5 (with

Doob’s upcrossing Lemma and its application P(A,;) = 0 remaining to be
proved.) O

Lemma 1. (Doob’s Upcrossing) Let X,, be a super-MG. Let Un|a,b] be the
number of upcrossing of [a, b] until time N with a < b. Then,

(b—a)E[Un[a,b]] <E[(Xy —a)7]

where
a—Xn, fXn<a

0, otw.

(Xy—a)” = {

Proof. Define a predictable sequence C), as follows.

Crle) = {1, if Xo(w) < a

0, otw.



Inductively,

1, if Cnfl(w) =1 and anl(w) < b
Cp(w)=141, ifCh_1(w)=0 and X,,_1(w) < a

0, otw.

By definition, C), is predictable. The sequence C), has the following property.
If Xy < a then C] = 1. Then the sequence C,, remains equal to 1 until the first
time X,, exceeds b. It then remains zero until the first time it becomes smaller
than a at which point it switches back to 1, etc. If instead Xy > a, then C; =0
and it remains zero until the first time X,, becomes smaller than a, at which
point C), switches to 1 and then continues as above. Consider

Y, =(C-X)p= > Cp(Xp—Xp_1)
1<k<n

We claim that

Yiv(w) > (b= a)Uya,b] - (X (w) —a)".
Let Un[a,b] = k. Then there is 0 < s3 < t1 < -+ < s < t < N such that
Xs,(w) <a<b< Xy(w), i =1, -,k By definition, Cs, 11 = 1 for all
i > 1. Further, Cy(w) = 1for s; + 1 <t < l; < t; where [; < t; is the smallest

time ¢ > s; such that X;(w) > b. Without the loss of generality, assume that
s1 = min{n : X,, < a}. Let, sx4+1 = min{n > ¢ : X,,(w) < a}. Then,

Ynv(w) = Cjw)(X;(w) - Xj-1(w))
J<N
=D [ Cnlw)(Xen(w) = Xe(w))]
1<i<k si<t<l;
+ Z Cry1(w)(Xi41(w) — Xi(w)) (Because otherwise Cy(w) = 0.)

t>sgk41

= Z (Xli(w) - Xsi(w)) + XN(w) — X’Sk_‘_1 (w),
1<i<k

where the term Xy (w) — X, ., (w) is defined to be zero if 5311 > N. Now,

X, (w) = X, (w) > b —a. Now if X(w) > X, ,, then
Xn(w) — X, >0.
Otherwise
(XN (W) = Xy )| < [Xn(w) —al.
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Therefore we have
Yn(w) > Un[a,b](b—a) — (Xn(w) —a)”

as claimed.
Now, as we have established earlier, Y,, = (C - X), is super-MG since
C, > 0is predictable. That is,

E[Yn] < E[Yp] =0

By claim,
(b — a)E[Un[a,b]] < E[(Xy —a)]

This completes the proof of Doob’s Lemma. O
Next, we wish to use this to prove P(A, ) = 0.

Lemma 2. Forany a < b, P(A,p) = 0.

Proof. By definition A, = {w : Usx[a, b] = co}. Now by Doob’s Lemma

(b = a)E[Uxla, b]] < E[(Xy —a)7]
< supE[|Xy[] +al

< 00

Now, Unla,b] ,/* Usla,b]. Hence by the Monotone Convergence Theorem,
E[Unla,b]] / E[Ux|a,b]]. That is, E[Ux|a,b]] < oo. Hence, P(Uxla,b] =
o0) = 0. O

2 Doob’s Inequality

Theorem 2. Let X,, be a sub-MG and let X} = maxo<m<n X,,. Given A > 0,
let A={X} > \}. Then,

MP(A) < E[X,1(A)] < E[X]
Proof. Define stopping time

N =min{m : X, > Aorm =n}

Thus, P(N < n) = 1. Now, by the Optional Stopping Theorem we have that
XnNan 1s a sub-MG. But Xyp, = Xn. Thus

E[Xn] < E[X,)] 3)



‘We have

E[XN] = E[XN1(A)] + E[XN1(A)]

=E[Xn1(A)] + E[X,1(A%)] “)
Similarly,
E[X,] = E[X,,1(A)] + E[X,1(A°)] 5
From (3)~ (5), we have
E[XN1(A4)] < E[X,1(A)] (6)
But
AP(A) < E[Xn1(A)] (7)
From (6) and (7),
AP(A) < E[X,1(A)]
< E[X,;1(4)]
<E[X;]. ®)
O

Suppose, X, is non-negative sub-MG. Then,

P( max Xj > ) <

1
—~E[X,,
0<k<n A [X0]

If it were MG, then we also obtain

1 1
> < — = —
P(Ogl%XnXk 2 A) < TE[Xn] = JE[Xo]

3 LP maximal inequality and L” convergence

Theorem 3. Let, X,, be a sub-MG. Suppose E[(X,)P] < oo for some p > 1.
Then,

S =

E[( max X[))5 < qE[(X;))7]

where é + 119 = 1. In particular, if X,, is a MG then | X,,| is a sub-MG and hence

1 1
E Xi)V)7 < qE[1 X, [P)v
[(jmax [ X)) < gE[Xn["]?



Before we state the proof, an important application is

Theorem 4. If X,, is a martingale with sup,, E[| X, |P] < oo where p > 1, then
Xn — X a.s. and in LP, where X = limsup,, X,,.

We will first prove Theorem 4 and then Theorem 3.

Proof. (Theorem 4) Since sup,, E[|X,|P] < oo, p > 1, by MG-convergence
theorem, we have that

X, — X, as., where X = limsup X,,.
n

For LP convergence, we will use LP-inequality of Theorem 3. That is,

E[( sup [Xn[)?] < ¢"E[| X, "]
0<m<n

Now, Supg<,<n|Xm| /* supg<;,|Xm|. Therefore, by the Monotone Conver-
gence Theorem we obtain that

E[sup|X;n|P] < ¢” sup E[| X, |P] < o0
0<m n

Thus, supg<,,| Xm| € LP. Now,

| X — X’ <2 SUP‘Xm|
0<m

Therefore, by the Dominated Convergence Theorem E[| X,, — X|P] — 0. O

Proof. (Theorem 3) We will use truncation of X" to prove the result. Let M be
the truncation parameter: xpM = min (X}, M). Now, consider the following:

E[(XM)P] = /0 PAPTIP(X M > \)dA

o 1
< / pAp—l[XE[Xm(X;;M > A\)]JdA
0

The above inequality follows from

0, if M <A

P(X;pM > 2) = .
P(X:>N), if M >\



and Theorem 2. By an application of Fubini for non-negative integrands, we
have

X:,NI

pE[X, / P2\

= —E[X;}F (X3P

< P _g[(x:)P)PE[(XM) D91 by Holder's inequality.  (9)
Here, = =1 — = = ¢q(p — 1) = p. Thus, we can simplify (9)

— GE[(X;)P]PE[(XM)P)a

Thus, ,
XM < gl X1 18
That is,
MR < X
Hence, || X3 ||, < gl| Xl =

4 Backward Martingale

Let F,, be increasing sequence of o-algebra, n < 0, such that --- C F_3 C
F_o C F_1 C Fy. Let X, be F,, adapted, n < 0, and

E[Xpi1|Fn] = Xpn, n <0
Then X, is called backward MG.

Theorem 5. Let X,, be backward MG. Then

lim X, = X_o exists a.s. and in L.
n——oo
Compare with standard MG convergence results:
(a): We need sup E[|X,,|] < oo, or non-negative MG in Doob’s convergence
theorem, which gives a.s. convergence not L.
(b): For L', we need UL And, it is necessary because if X,, — Xinfty a.s. and
L' then there exists X € F, s.t. X,, = E[X|F},]; and hence X, is UL



Proof of Theorem 5. Recall Doob’s convergence theorem’s proof. Let

A ={w: X, (w) does not converge to a limit in [—oo, oo }
= {w : liminf X,,(w) < limsup X, (w)}
n n

= Ug papeoiw : liminf X, (w) < a < b < limsup X, (w)}
n n
= Ua,b:a,bEQAa,b

Now, recall Uy, [a, b] is the number of upcrossing of [a, b] in X,,, Xy 41, ..., Xo as
n — —oo. By upcrossing inequality, it follows that

(b — a)E[Un[a, b]] < E[|Xo[] + |a|
Since Uy[a, b] /* Uso[a, b] and By monotone convergence theorem, we have
E[lUx|a,b]] < 0o =P(Agp) =0

This implies X,, converges a.s.
Now, X,, = E[Xy|F},]. Therefore, X,, is UL This implies X,, — X_ in
L. O

Theorem 6. If X_, = lim,, o X, and F_oo = Ny Fn. Then X_o =
E[Xo|F-oo]-

Proof. Let X,, = E[Xo|F,]. f A € F_oo C Fp, then E[X,,; A] = E[Xo; A].
Now,

[E[Xn; A] = E[X_oo; A = [E[Xpn — X—oc; A]|
< E[’Xn - X—oo’% A]
< E[|X,, — X_«|] = 0as n — —oo (by Theorem 5)

Hence, E[X_; A] = E[Xo; A]. Thus, X_ o, = E[Xo|F_]. O

Theorem 7. Let F, \  F—oo, and Y € LY. Then, E[Y|F,] — E[Y|F_x] a.s.
in L.

Proof. X,, = E[Y|F,] is backward MG by definition. Therefore,
X,, = X_ooa.s. and in L.

By Theorem 6, X_ o, = E[Xo|F_] = E[Y|F_o]. Thus, E[Y|F,] = E[Y|F_].
O



5 Strong Law of Large Number

Theorem 8 (SLLN). Let & be i.i.d. with E[|§;|] < oo. Let Sp, = & + ... + &
Let X_, = 32, And, F_p, = 0(Sn,&nt1, --.). Then,
Sn,
BIX | Fn-1] = E[?‘}——n—l]
1 n
= > E[&i]Sn1a]
i=1
= E[&1|Sn 1]
1
on+ 1Sn+1
= X—n+1

Then X_,, is backward MG.

Proof. By Theorem 5~ 7, we have X_,, - X_,, a.s. and in LY, with X_, =
E[¢1]|F_c0]- Now F_ is in £ (the exchangeable o-algebra). By Hewitt-Savage
(proved next) 0-1 law, & is trivial. That is, E[¢;|F_o] is a constant. Therefore,
E[X_o] = E[&1] is also a constant. Thus,

n—oo n

6 Hewitt-Savage 0-1 Law

Theorem 9. Let X, ..., X, be i.i.d. and & be the exchangeable o — algebra:
&n={A:m A=AV, €S} € =Unpén

If A €& thenP(A) € {0,1}.

Proof. The key to the proof is the following Lemma:

Lemma 3. Let X1, ..., X be i.i.d. and define

1
An(@)=— Y Au(Xi, . X5,)
Pl (iy,ein) {10}
If ¢ is bounded then

An(8) = E[(X1, ..., Xp)] a.s.



Proof. A, (¢) € &, by definition. So

1
Pk gy . ik
1

Let 7, = &,. Then F_, F_oo = & Then, for Y = ¢(Xy,..., Xk).
E[Y|F_,] is backward MG. Therefore,

E[Y‘f—n} - E[Y‘f—oo] = E[¢(X177Xk)’€]

Thus,

An(¢) = E[p(X1, ..., Xp)[¢] (11

We want to show that indeed E[¢( X7, ..., X,,)|¢] is E[p( X7, ..., X3)]-

First, we show that E[¢(X7, ..., X,,)[€] € 0(Xk41,...) since ¢ is bounded.
Then, we find that if E[X |G] € F where X is independent of F then E[X|G] is
constant, equal to E[X]. This will complete the proof of Lemma.

First step: consider Ay, (¢). It has n,, terms in which there are k(n — 1)
terms containing X;. Therefore, the effect of terms containing X is:

Prk—1

1 1
Tn(l) = T Z ¢(Xi17 7X'Lk) S Tk ((n - 1);01@71) H¢||OO
Pk (il,...,ik) Pk
_(n—k)! (n—1)
= X6l > 0as m - o0 (12)

Let A1 (¢) = An(¢) — Tp,(1). Then, we have A, 1(¢) — E[p(X1, ..., X,)[€]
from (11) and (12). Thus, E[¢(¢(X1, ..., X)) [¢] is independent on X ;. Simi-
larly, repeating argument for X5, ..., X we obtain that

E[gb(Xl, . Xn)|f] S O-(XnJrl, )

Second step: if E[X?] < oo, E[X|G] € F, X is independent of F then
E[X|G] = E[X].

10



Proof. LetY = E[X|G]. Now Y € F and X is independent on F; we have that
E[XY] = E[X]E[Y] = E[Y]?

, since E[Y] = E[X]. Now by definition of conditional expectation for any
7 € G, E[XZ] = E[Y Z]. Hence, for Z = Y, we have E[XY] = E[Y?]. Thus,

E[Y?] =E[Y]? = Var(Y) =0

=Y =E[Y] as. 13)
O
This completes the proof of the Lemma. O

Now completing proof of H-S law.

We have proved that A, (¢) — E[p(Xy,...,X,,)] a.s. for all bounded ¢
dependent on finitely many components.

By the first step, £ is independent on G, = o (X7, ..., Xx). This is true for
all k. UiGy is a m-system which contains 2. Therefore, £ is independent of
o(UrGk) and £ C o(UgGy). Thus, for all A € £, A is independent of itself.
Hence,

P(ANA) =P(A)P(A) = P(A) € {0,1}.

7 De Finetti’s Theorem

Theorem 10. Given X1, Xo, ... sequence of exchangeable, that is, for any n
and T, € Sp, (X1,..,X,) = (Xr,(1) s X)) then conditional on &,
X1,...,X,,...are iid.

Proof. AsinH-S’s proof and Lemma, define A,,(¢) = —— 2 i) DXy ooy Xiy).

Then, due to exchangeability,

An(9) = E[An(9)|¢n] = E[p(X1, ..., Xin)[€n]
— E[p(X1, ..., X»n)|£] by backward MG convergence theorem. (14)

Since X1, ... may not be i.i.d., £ can be nontrivial. Therefore, the limit need not
be constant. Considera f : R — Rand g : R — R. Let I, 1, be set of all
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distinct 1 < 41, ..., 7 < n, then
Ny An(f)nAn(g)

= > > 9(Xm)

ie[n,k—lf(Xil 7-'-7Xik_1) m<n

= ) f(Xi X )X+ > (X X)) a(X)

1€l k i€ln k1 1

<.
I

15)

Letqu(Xl, ---an—l) = f(Xl, ...,Xk_l)g(Xj), 1< j < k-1 andQS(Xl, ,Xk) =
f(X1, .oy Xk—1)g(Xk). Then,

k-1
Ny An(f)nAn(9) = np, An (@) + 1p,._, Z An(o5)
=1

Dividing by n,, , we have

n

1 k
mAn(f)An(g) = An(¢) + m ;An(%)

by 15, and fact that || f||cc, ||9]|cc < 00, We have
E[f (X1, ..., X1 [OIE[g(X1)[¢] = E[f (X1, ..., Xi—1)9(Xk)[¢] (16)

Thus, we have using (16) that for any collection of bounded functions f1, ..., f%,
k k
E(] ] £i(Xx0)l¢] = [[EIf:(X0)1¢]
i=1 i=1

O]

Message: given the “symmetry” assumption and given “exchangeable” statis-
tics, the underlying r.v. conditionally become i.i.d.!

A nice example. Let X; be exchangeable r.v.s. taking values in {0, 1}. Then
there exists distributions on [0, 1] with distribution function F s.t.

1
P(X1+..+X,=k)= / 0k (1 — 0)"*dF(0)
0

for all n. That is, mixture of i.i.d. r.v.
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