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Martingale Convergence Theorem 

Theorem 1. (Doob) Suppose Xn is a super-martingale which satisfies 

sup E[|Xn|] < ∞ 
n 

Then, almost surely X∞ = limn Xn exists and is finite in expectation. That is, 
define X∞ = lim sup Xn. Then Xn → X∞ a.s. and E[|X∞|] < ∞. 

Proof. The proof relies “Doob’s Upcrossing Lemma”. For that consider 

Λ £ {ω : Xn(ω) does not converge to a limit in R} 
= {ω : lim inf Xn(ω) < lim sup Xn(ω)}

n n 

= ∪a<b:a,b∈Q{ω : lim inf Xn(ω) < a < b < lim sup Xn(ω)}, (1) 
n n 

where Q is the set of rational values. Let, UN [a, b](ω) = largest k such that it 
satisfies the following: there exists 

0 ≤ s1 < t1 < ... < sk < tk ≤ N 
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such that
 
Xsi (ω) < a < b < Xti (ω), 1 ≤ i ≤ k. 

That is, UN [a, b] is the number of up-crossings of [a, b] up to N . Clearly, 
UN [a, b](ω) is non-decreasing in N . Let U∞[a, b](ω) = limN→∞ UN [a, b](ω). 
Then (1) can be re-written as 

Λ = ∪a<b:a,b∈Q{ω : U∞[a, b](ω) = ∞} 
= ∪a<b:a,b∈QΛa,b. (2) 

Doob’s upcrossing lemma proves that P(Λa,b) = 0 for every a < b. Then we 
have from (2) that P(Λ) = 0. Thus, Xn(ω) converges in [−∞, ∞] a.s. That is, 

X∞ = lim Xn exists a.s. 
n 

Now, 

E[|X∞|] = E[lim inf |Xn|] 
n 

≤ lim inf E[|Xn|] 
n 

≤ sup E[|Xn|] < ∞, 
n 

where we have used Fatou’s Lemma in the first inequality. Thus, X∞ is in L1. 
In particular, X∞ is finite a.s. This completes the proof of Theorem 5 (with 
Doob’s upcrossing Lemma and its application P (Λa,b) = 0 remaining to be 
proved.) 

Lemma 1. (Doob’s Upcrossing) Let Xn be a super-MG. Let UN [a, b] be the 
number of upcrossing of [a, b] until time N with a < b. Then, 

(b − a)E[UN [a, b]] ≤ E[(XN − a)−] 

where  
a − XN , if XN ≤ a 

(XN − a)− =
0, otw. 

Proof. Define a predictable sequence Cn as follows.  
1, if X0(ω) < a 

C1(ω) =
0, otw. 
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Inductively,
 

Cn(ω) = 

⎧ ⎪⎨ ⎪⎩  

1, if Cn−1(ω) = 1 and Xn−1(ω) ≤ b 
1,  if Cn−1(ω) = 0 and Xn−1(ω) < a 
0, otw.
 

By definition, Cn is predictable. The sequence Cn has the following property. 
If X0 < a then C1 = 1. Then the sequence Cn remains equal to 1 until the first 
time Xn exceeds b. It then remains zero until the first time it becomes smaller 
than a at which point it switches back to 1, etc. If instead X0 > a, then C1 = 0 
and it remains zero until the first time Xn becomes smaller than a, at which 
point Cn switches to 1 and then continues as above. Consider   

Yn = (C · X)n = Ck(Xk − Xk−1) 
1≤k≤n 

We claim that 

YN (ω) ≥ (b − a)UN [a, b] − (XN (ω) − a)− . 

Let UN [a, b] = k. Then there is 0 ≤ s1 < t1 < · · · < sk < tk ≤ N such that 
Xsi (ω) < a < b < Xti (ω), i = 1, · · · , k. By definition, Csi+1 = 1 for all 
i ≥ 1. Further, Ct(ω) = 1 for si + 1 ≤ t ≤ li ≤ ti where li ≤ ti is the smallest 
time t ≥ si such that Xt(ω) > b. Without the loss of generality, assume that 
s1 = min{n : Xn < a}. Let, sk+1 = min{n > tk : Xn 
YN (ω) = Cj (ω)(Xj (ω) − Xj−1(ω)) 

(ω) < a}. Then,
 

  

 
 j≤N 

= [ Ct+1(ω)(Xt+1(ω) − Xt(ω))] 
1≤i≤k si≤t≤li 

+ Ct+1(ω)(Xt+1(ω) − Xt(ω)) (Because otherwise Ct(ω) = 0.) 
t≥sk+1   

= (Xli (ω) − Xsi (ω)) + XN (ω) − Xsk+1 (ω),  
1≤i≤k  

where the term XN (ω) − Xsk+1 (ω) is defined to be zero if sk+1 > N . Now, 
Xli (ω) − Xsi (ω) ≥ b − a. Now if XN (ω) ≥ Xsk+1 then 

≥ 0.XN (ω) − Xsk+1 

Otherwise 
|XN (ω) − Xsk+1(ω)| ≤ |XN (ω) − a|. 
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Therefore we have
 

YN (ω) ≥ UN [a, b](b − a) − (XN (ω) − a)− 

as claimed. 
Now, as we have established earlier, Yn = (C · X)n is super-MG since 

Cn ≥ 0 is predictable. That is, 

E[YN ] ≤ E[Y0] = 0 

By claim, 
(b − a)E[UN [a, b]] ≤ E[(XN − a)−] 

This completes the proof of Doob’s Lemma. 

Next, we wish to use this to prove P(Λa,b) = 0. 

Lemma 2. For any a < b, P(Λa,b) = 0. 

Proof. By definition Λa,b = {ω : U∞[a, b] = ∞}. Now by Doob’s Lemma 

(b − a)E[UN [a, b]] ≤ E[(XN − a)−] 
≤ sup E[|Xn|] + |a|

n 

< ∞ 

Now, UN [a, b] / U∞[a, b]. Hence by the Monotone Convergence Theorem, 
E[UN [a, b]] / E[U∞[a, b]]. That is, E[U∞[a, b]] < ∞. Hence, P(U∞[a, b] = 
∞) = 0. 

Doob’s Inequality 

Theorem 2. Let Xn be a sub-MG and let X∗ = max0≤m≤n X
+. Given λ > 0,n m

let A = {X∗ ≥ λ}. Then, n 

λP(A) ≤ E[Xn1(A)] ≤ E[X+]n 

Proof. Define stopping time 

N = min{m : X ∗ ≥ λ or m = n}m 

Thus, P(N ≤ n) = 1. Now, by the Optional Stopping Theorem we have that 
XN∧n is a sub-MG. But XN ∧n = XN . Thus 

E[XN ] ≤ E[Xn] (3) 
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We have
 

E[XN ] = E[XN 1(A)] + E[XN 1(A
c)] 

= E[XN 1(A)] + E[Xn1(A
c)] (4) 

Similarly, 

E[Xn] = E[Xn1(A)] + E[Xn1(A
c)] (5) 

From (3)∼ (5), we have 

E[XN 1(A)] ≤ E[Xn1(A)] (6) 

But 

λP(A) ≤ E[XN 1(A)] (7) 

From (6) and (7), 

λP(A) ≤ E[Xn1(A)] 
≤ E[X+1(A)]n 

≤ E[X+]. (8)n 

Suppose, Xn is non-negative sub-MG. Then, 

1
P( max Xk ≥ λ) ≤ E[Xn] 

0≤k≤n λ 

If it were MG, then we also obtain 

1 1
P( max Xk ≥ λ) ≤ E[Xn] = E[X0] 

0≤k≤n λ λ 

Lp maximal inequality and Lp convergence 

Theorem 3. Let, Xn be a sub-MG. Suppose E[(X+)p] < ∞ for some p > 1.n 
Then, 

E[( max X+)p] p 
1 
≤ qE[(X+)p] p 

1 

k n 
0≤k≤n  

1 where 1 + = 1. In particular, if Xn is a MG then |Xn| is a sub-MG and hence q p 

1 1 
pE[( max |Xk|)p] ≤ qE[|Xn|p] p 

0≤k≤n
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Before we state the proof, an important application is
 

Theorem 4. If Xn is a martingale with sup E[|Xn|p] < ∞ where p > 1, then n 
Xn → X a.s. and in Lp, where X = lim sup Xn.n 

We will first prove Theorem 4 and then Theorem 3. 

Proof. (Theorem 4) Since sup E[|Xn|p] < ∞, p > 1, by MG-convergence n 
theorem, we have that 

Xn → X, a.s., where X = lim sup Xn. 
n 

For Lp convergence, we will use Lp-inequality of Theorem 3. That is, 

E[( sup |Xm|)p] ≤ qpE[|Xn|p] 
0≤m≤n

Now, sup0≤m≤n|Xm| / sup0≤m|Xm|. Therefore, by the Monotone Conver­
gence Theorem we obtain that 

pE[sup |Xm|p] ≤ q sup E[|Xn|p] < ∞ 
0≤m n 

Thus, sup0≤m|Xm| ∈ Lp. Now, 

|Xn − X| ≤ 2 sup |Xm|
0≤m

Therefore, by the Dominated Convergence Theorem E[|Xn − X|p] → 0. 

Proof. (Theorem 3) We will use truncation of X∗ to prove the result. Let M ben 
the truncation parameter: Xn 

∗,M = min(X∗,M). Now, consider the following: n ∞ 
E[(X ∗,M )p] = pλp−1P(X ∗,M ≥ λ)dλn n 

0 ∞ 
1(X ∗,M≤ pλp−1[

1 
E[X+ ≥ λ)]]dλn nλ0 

The above inequality follows from 

0, if M < λ 
P(X ∗,M ≥ λ) = n P(X∗ ≥ λ), if M ≥ λn 
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and Theorem 2. By an application of Fubini for non-negative integrands, we
 
have 

X ∗,M 
n 

pE[X+ 
n λp−2dλ] 

0 

= 
p 

E[X+ 
n (X ∗,M 

n )p−1] 
p − 1 
p 1 1 

)p] p E[(X ∗,M )(p−1)q] q≤ E[(X+ , by Holder’s inequality. (9)n n p − 1 

Here, 1 = 1 − 1 ⇒ q(p − 1) = p. Thus, we can simplify (9) q p 

= qE[(X+)p] p 
1 
E[(X ∗,M )p] 

1 
q 

n n 

Thus, 
p 
q||X ∗,M ||p ≤ q||X+||p||X ∗,M ||pn p n n 

That is, 
p(1− 1 )

q||X ∗,M ||p ≤ q||X+||pn n 

∗,MHence, ||Xn ||p ≤ q||X+||p.n 

Backward Martingale 

Let Fn be increasing sequence of σ-algebra, n ≤ 0, such that · · · ⊂ F−3 ⊂ 
F−2 ⊂ F−1 ⊂ F0. Let Xn be Fn adapted, n ≤ 0, and 

E[Xn+1|Fn] = Xn, n < 0 

Then Xn is called backward MG. 

Theorem 5. Let Xn be backward MG. Then 

lim Xn = X−∞ exists a.s. and in L1 . 
n→−∞ 

Compare with standard MG convergence results: 
(a): We need sup E[|Xn|] < ∞, or non-negative MG in Doob’s convergence 
theorem, which gives a.s. convergence not L1 . 
(b): For L1, we need UI. And, it is necessary because if Xn → Xinfty a.s. and 
L1 then there exists X ∈ F∞ s.t. Xn = E[X|Fn]; and hence Xn is UI. 
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Proof of Theorem 5. Recall Doob’s convergence theorem’s proof. Let
 

Λ : = {ω : Xn(ω) does not converge to a limit in [−∞, ∞]} 
= {ω : lim inf Xn(ω) < lim sup Xn(ω)}

n n 

= ∪a,b:a,b∈Q{ω : lim inf Xn(ω) < a < b < lim sup Xn(ω)}
n n 

= ∪a,b:a,b∈QΛa,b 

Now, recall Un[a, b] is the number of upcrossing of [a, b] in Xn, Xn+1, ..., X0 as 
n → −∞. By upcrossing inequality, it follows that 

(b − a)E[Un[a, b]] ≤ E[|X0|] + |a| 

Since Un[a, b] / U∞[a, b] and By monotone convergence theorem, we have 

E[U∞[a, b]] < ∞ ⇒ P(Λa,b) = 0 

This implies Xn converges a.s. 
Now, Xn = E[X0|Fn]. Therefore, Xn is UI. This implies Xn → X−∞ in 

L1 . 

Theorem 6. If X−∞ = limn→−∞ Xn and F−∞ = ∩nFn. Then X−∞ = 
E[X0|F−∞]. 

Proof. Let Xn = E[X0|Fn]. If A ∈ F−∞ ⊂ Fn, then E[Xn; A] = E[X0; A]. 
Now, 

|E[Xn; A] − E[X−∞; A]| = |E[Xn − X−∞; A]| 
≤ E[|Xn − X−∞|; A] 
≤ E[|Xn − X−∞|] → 0 as n → −∞ (by Theorem 5) 

Hence, E[X−∞; A] = E[X0; A]. Thus, X−∞ = E[X0|F−∞]. 

Theorem 7. Let Fn � F−∞, and Y ∈ L1. Then, E[Y |Fn] → E[Y |F−∞] a.s. 
in L1 . 

Proof. Xn = E[Y |Fn] is backward MG by definition. Therefore, 

Xn → X−∞ a.s. and in L1 . 

By Theorem 6, X−∞ = E[X0|F−∞] = E[Y |F−∞]. Thus, E[Y |Fn] → E[Y |F−∞]. 
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5 Strong Law of Large Number

Theorem 8 (SLLN). Let ξ be i.i.d. with E[|ξi|] < ∞. Let Sn = ξ1 + ... + ξn.
Let X n = Sn

n . And, S− F (−n = σ n, ξn+1, ...). Then,

S
E[X−n|F n

−n 1] = E[−
n
|F−n−1]

n
1

=
∑

E[ξi|Sn+1]
n
i=1

= E[ξ1|Sn+1]

1
= Sn+1
n+ 1

= X−n+1

Then X−n is backward MG.

Proof. By Theorem 5∼ 7, we have X 1
−n → X a.s. and in L , with X =−∞ −∞

E[ξ1|F ]. Now F is in ξ (the exchangeable σ-algebra). By Hewitt-Savage−∞ −∞
(proved next) 0-1 law, ξ is trivial. That is, E[ξ1|F ] is a constant. Therefore,−∞
E[X ] = E[ξ1] is also a constant. Thus,−∞

Sn
X = lim = E[ξ−∞ 1]

n→∞ n

6 Hewitt-Savage 0-1 Law

Theorem 9. Let X1, ..., Xn be i.i.d. and ξ be the exchangeable σ − algebra:

ξn = {A : πnA = A; ∀πn ∈ Sn}; ξ = ∪nξn

If A ∈ ξ, then P(A) ∈ {0, 1}.

Proof. The key to the proof is the following Lemma:

Lemma 3. Let X1, ..., Xk be i.i.d. and define

1
An(φ) =

∑
An(φ(Xi1 , ..., Xi ))

n k
pk (i1,...,ik)∈{1,...,n}

If φ is bounded then

An(φ)→ E[φ(X1, ..., Xk)] a.s.
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Proof. An(φ) ∈ ξn by definition. So 

An(φ) = E[An(φ)|ξn] 

= 
1 
npk i1,...,ik 

E[φ(Xi1 , ..., Xik )|ξn] 

= 
1 
npk i1,...,ik 

E[φ(X1, ..., Xk)|ξn] 

= E[φ(X1, ..., Xk)|ξn] (10) 

Let F−n = ξn. Then F−n F−∞ = ξ. Then, for Y = φ(X1, ..., Xk). 
E[Y |F−n] is backward MG. Therefore, 

E[Y |F−n] → E[Y |F−∞] = E[φ(X1, ..., Xk)|ξ] 

Thus, 

An(φ) → E[φ(X1, ..., Xk)|ξ] (11) 

We want to show that indeed E[φ(X1, ..., Xn)|ξ] is E[φ(X1, ..., Xn)]. 
First, we show that E[φ(X1, ..., Xn)|ξ] ∈ σ(Xk+1, ...) since φ is bounded. 

Then, we find that if E[X|G] ∈ F where X is independent of F then E[X|G] is 
constant, equal to E[X]. This will complete the proof of Lemma. 

First step: consider An(φ). It has npk terms in which there are k(n − 1)pk−1 

terms containing X1. Therefore, the effect of terms containing X1 is: 

1 1 � � 
Tn(1) ≡ φ(Xi1 , ..., Xik ) ≤ k (n − 1)pk−1 ||φ||∞ 

npk npk(i1,...,ik) 

(n − k)! (n − 1)! 
= k ||φ||∞ 

n! (n − k)!
k 

= ||φ||∞ → 0 as n → ∞ (12) 
n

Let A−1(φ) = (φ) − Tn(1). Then, we have A−1(φ) → E[φ(X1, ..., Xn)|ξ]n An n 
from (11) and (12). Thus, E[φ(φ(X1, ..., Xn))|ξ] is independent on X1. Simi­
larly, repeating argument for X2, ..., Xk we obtain that 

E[φ(X1, ..., Xn)|ξ] ∈ σ(Xn+1, ...) 

Second step: if E[X2] ≤ ∞, E[X|G] ∈ F , X is independent of F then 
E[X|G] = E[X]. 
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Proof. Let Y = E[X|G]. Now Y ∈ F and X is independent on F1 we have that 

E[XY ] = E[X]E[Y ] = E[Y ]2 

, since E[Y ] = E[X]. Now by definition of conditional expectation for any 
Z ∈ G, E[XZ] = E[Y Z]. Hence, for Z = Y , we have E[XY ] = E[Y 2]. Thus, 

E[Y 2] = E[Y ]2 ⇒ V ar(Y ) = 0 
⇒ Y = E[Y ] a.s. (13) 

This completes the proof of the Lemma. 

Now completing proof of H-S law. 
We have proved that An(φ) → E[φ(X1, ..., Xn)] a.s. for all bounded φ 

dependent on finitely many components. 
By the first step, ξ is independent on Gk = σ(X1, ..., Xk). This is true for 

all k. ∪kGk is a π-system which contains Ω. Therefore, ξ is independent of 
σ(∪kGk) and ξ ⊂ σ(∪kGk). Thus, for all A ∈ ξ, A is independent of itself. 
Hence, 

P(A ∩ A) = P(A)P(A) ⇒ P (A) ∈ {0, 1}. 

De Finetti’s Theorem 

Theorem 10. Given X1, X2, ... sequence of exchangeable, that is, for any n 
and πn ∈ Sn, (X1, ..., Xn) £ (Xπn(1), ..., Xπn(n)), then conditional on ξ, 
X1, ..., Xn, ... are i.i.d.  1Proof. As in H-S’s proof and Lemma, define An(φ) = npk

φ(Xi1 , ..., Xik ).(i1,...,ik) 
Then, due to exchangeability, 

An(φ) = E[An(φ)|ξn] = E[φ(X1, ..., Xn)|ξn] 
→ E[φ(X1, ..., Xn)|ξ] by backward MG convergence theorem. (14) 

Since X1, ... may not be i.i.d., ξ can be nontrivial. Therefore, the limit need not 
be constant. Consider a f : Rk−1 → R and g : R → R. Let In,k be set of all 
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distinct 1 ≤ i1, ..., ik ≤ n, then 

npk−1 An(f)nAn(g) 

= g(Xm) 
i∈In,k−1f(Xi1 ,...,Xik−1 ) m≤n ⎡ ⎤ 

k−1 

= f(Xi, ..., Xik−1 )g(Xik ) + ⎣f(Xi1 , ..., Xik−1 ) g(Xij )⎦ 
i∈In,k i∈In,k−1 j=1 

(15) 

Let φj (X1, ..., Xk−1) = f(X1, ..., Xk−1)g(Xj ), 1 ≤ j ≤ k−1 and φ(X1, ..., Xk) = 
f(X1, ..., Xk−1)g(Xk). Then, 

k−1 

npk−1 An(f)nAn(g) = npk An(φ) + npk−1 An(φj ) 
j=1 

Dividing by npk , we have 

k 
n 1 

An(f)An(g) = An(φ) + An(φj ) 
n − k + 1 n − k + 1 

j=1 

by 15, and fact that ||f ||∞, ||g||∞ < ∞, we have 

E[f(X1, ..., Xk−1|ξ)]E[g(X1)|ξ] = E[f(X1, ..., Xk−1)g(Xk)|ξ] (16) 

Thus, we have using (16) that for any collection of bounded functions f1, ..., fk, kk kk 
E[ fi(Xi)|ξ] = E[fi(Xi)|ξ] 

i=1 i=1 

Message: given the “symmetry” assumption and given “exchangeable” statis­
tics, the underlying r.v. conditionally become i.i.d.! 

A nice example. Let Xi be exchangeable r.v.s. taking values in {0, 1}. Then 
there exists distributions on [0, 1] with distribution function F s.t. 

1 
P(X1 + ... + Xn = k) = θk(1 − θ)n−kdF (θ) 

0 

for all n. That is, mixture of i.i.d. r.v. 
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