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Concentration Inequalities and Applications

Content.

1 Talagrand’s inequality

Let (9, Fi, pt;) be probability spaces (i = 1,...,n). Let p = p1 Q) ... Q pn, be
product measure on X =y X ... x Q. Letz = (x1,...,x,) € X be a point in
this product space.

Hamming distance over X:

dz,y) =i <i<nizi Zyl = L
=1

a-weighted Hamming distance over X fora € R’} :
da(x7 y) = Z all{lﬁ#yl}
i=1

Also |a] = /> a2
Control-distance from a set: forset A C X,and z € X:

D4 (z) = sup dy(z, A) = inf{d,(z,y) : y € A}
la]=1

Theorem 1 (Talagrand). For every measurable non-emply set A and product-

measure [,
1 9 1
exp(= (DY) )dp < ——

In particular,

p({Da = t}) < p



2 Application of Talagrand’s Inequality

2.1 Concentration of Lipschitz functions.

Let F : X — R for product space X = {21 X ... X £, such that for every x € X,
there exists a = a(x) € R”} with |a| =1 so that foreachy € Y,

F(x) < F(y) + da(z,y) ¢))

Why does every 1-Lipschitz function is essentially like (1)?
Consider a 1-Lipschitz function f : X — R such that

1f(z) — f(y)]| < Z |z; — yi| (defined on ;) for all z,y € X.

Let d; = max, ycq |x; — yi|. We assume d; is bounded for all 7. Then,
F@) = FO <D s — wil € Lygypyyds
i i

Therefore,

flz

: di
\/27 < ZZ: \/71{%#%} do(z,y) with a; = ﬁ

Thus F(z) = ‘ﬁﬁl where ||d||2 = \/é ;d2.

Let A = {F < m}. By definition of D (z),

DCA(x) = sup da(x>A> > da(x,y)
a:lal=1

for a given a such that |a| = 1 and y € A. Now for any y € A, by definition
F(y) < m. Then,

F(x) < F(y) + da(x,y) < m+ Dj(x)
which implies {F" > m + r} C {D(x) > r}. By Talagrand’s inequality, for
any r > 0,

72

P = m+ 1)) < BUDA 2 1) < o exp(=T)
That is,

7,.2
PHE <m})P{EF 2 m+r}) < exp(=-) 2



The median of F', mp is precisely such that

1 1
P(F < mp) 2 5, P(F 2 mp) 2
Choose m = mp, m = mp — 7 in (2) to obtain:
2 2

P(F>mp+r7r) < Zexp(—%), P(F <mp—r)< 2exp(—%) 3)

Thus,
2

B(|F = mp| > 7) < 4exp(—)
2.2 Further Application for Linear Functions

Consider the independent random variables Y7, ..., Y;, on some probability space
(Q, F,P). Let the constants (u;,v;), 1 < i < n such that

u; <Y; <y

Set Z = supyer < t,Y >= > " t;Y; where T is some finite, countable or
compact set of vectors in R. We would be interested in situations where

2 E 2 2
g~ = Ssup t7(v; — uy < oo
tel i Z( ' Z)

We wish to apply (3) to this setting by choosing

F(z)=sup < t,z >
teT

where © € X and X = [[ [u;,v;]. Given that T is compact, F(z) =<
t*(x),x > for some t = t*(x) € T, given x.

F(z) = thi < Ztiyi + Z Itillys — il
=1 i i
< Ztiyi + Z [ti|(vi — wi)(y, 20,y et di = [ti](vi — u;)) -

- d;
< sup < t,y > +(Z Wl(yz # x;))||d]]2
teT i 2

_ F(y) + do(z, y)||d||» (where let & = ||d||o = \/supZt?(vi —w)?)
teT

= F(y) + Oda(l‘, y) “4)



By selection of f = %F (3) can be applied to f:
2
B(1f = my| > 1) < dexp(=T)
Letr = 2, then P(|of — omy| > ) < 4exp(—; ) That is,

2
y
P(IF —mp| 2 7) < dexp(—73)

Now,

E[F] = /OO P(F > s)ds (assume t =0 € T')
0

mg 00
</ 1d3—|—/ P(F > mp + v)dy
0 0

> Y
<me+ [ 2exp(- )y
0 40
A2
do A2
2
=mp + 2V8ro? / exp(——

271'402 402
=mr +2V2r0

§mp—|—/ 2exp(— )dry
0

)dy

Thus,
|E[F] — mp| < 2V27m0

2.3 More Intricate Application

Longest increasing subsequence:

Let X1, ..., X, be points in [0, 1] chosen independently as a product measure.
Let L, (X1, ..., X;,) be the length of longest increasing subsequence. (Note that
L, (+) is not obviously Lipschitz). Talagrand’s inequality implies its concentra-
tion.

Lemma 1. Let m,, be median of L,,. Then for any r > 0, we have

2

r
P(L, >m,+7r)<2e -
(Ln 2 mn + 1) < 2exp( 4(mn+r))
2
P(Lngmn_r)§2exp(_4mn)



Proof. Let us start by establishing first inequality. Select A = {L,, < my}.
Clearly, by definition P(4) > I. For a « such that L,,(z) > my, (ie. x € A),
consider any y € A. Now, let set I C [n] be indices that give rise to longest
increasing subsequence in x: i.e. say I = {i1,...,ip} then z;, < x4, < ... < 2y,
and p is the maximum length of any such increasing subsequence of x. Let
J={iel:ux #vy;} for given y. Since I\J is an index set that corresponds
to a increasing subsequence of y (since for ¢ € I\J; x; = y; and I is index set
of increasing subsequence of I); we have that (using fact that L,,(y) < m,, as
y €A
II\NJ| < my,

That is,

Ln(z) = [ < [I\J[ + |]]

n(y) + > Wwi # i)

iel
y)+ L Z\/i (1 € D1(x; # yi)]

Define

1 . .
e ifrel
0, 0.W.

a;(z) =

Then |a| = 1 since |I| = L, (x) by definition, and hence,

Lo(®) < Ln() + VILn(@)da(,y) < mp + v/Ln(2)D5 ()
Equivalently,
Di(z) >

For z such that L,,(x) > m,, + r, the RHS of ahove is minimal when L,,(x) =
my, + 7. Therefore, we have

For z such that L,,(z) > m,, + r, the RHS of above is minimal when L,,(x) =
my, + r. Therefore, we have

r

Vi, + 1

5

Di(z) >



That is

L,(z) > m, +r = D4(x) > for A={L, <m,}

r
VMy + 7
Putting these together, we have

T 1 r2

Ve = 2P P aGm, )

But P(A) = P(L, <my,) > %, we have that

P(L, > my +r) <P(DG >

T2

)

To establish lower bound, replace argument of the above with x such that L,,(z) >
s+u, A= {Ly, < s}. Then we obtain,

U
S+ u

Di(x) >

Select s = m,, — r, u = r. Then whenever x is such that L, (z) > s +u =m,
and for A = {L,, < s} ={L, <m, —r}.

r
D4 (x) >
i) 2 e
Thus,
P(L, > my) < B(D4 > ——) < ! exp(— TQ)
== A=y T P(Ly < mp —7) P 4m,
which implies
2
P(L, <my —r) <2exp(— r )
My
This completes the proof. O

3 Proof of Talagrand’s Inequality

Preparation. Givenset A, z € X: D (z) = SUDgeR? (do(x, A) = infyea da(x,y)).
Let

Ua(z) ={s€{0,1}":Jy € Awiths £ 1(z # y)} = {1(z # y) : y € A}



and let

Va(z) = Convex-hull(Ux(z)) = { Z S Zas =1,as > 0forall s € Uy(x)}
seUa(x)

Thus,
reAel(z#x)=0€Uxs(r) <0 Vy(x)

It can therefore be checked that

Lemma 2.
Di(z) = d(0,Va(x)) = inf |yl
y€Va(z)
Proof. (i) D§(x) < infyey, (o) |yl: since infycy, (1) (y) is achieved, let Z be
such that |Z| = infycy, () |y[. Now for any a € R}, |a| = 1:

inf a-y<a-z<lallz] =2
yEVa(x)
Since inf ey, ;) a - y is linear programming, the minimum is achieved at an
extreme point. That is, there exists s € U (z) such that

inf a-y= inf a-s=inf d,(x,y) for some y € A.
yeVa(2) Y seUa(z) yeA (2, 9) J

Since this is true for all a, it follows that,

sup inf dg(z,y) <|z| = inf |y
la|=1,a€R7 YEA ‘ yeVa(z)

(ii) DG (x) > infycy, (o) |yl Let z be the one achieving minimum in Va(z).
Then due to convexity of the objective (equivalently |y|*> = Y y? = f(y))
and of the domain, we have for any y € V4(x), Vf(z)(y — z) > 0 for any
y € Va(z). Vf(2) = V(z - z) = 2z. Therefore the condition implies

(y—z)220<:>y'22z-z:]z|2:>y'|z—’2|z|
z

Thus, for a = é € R%, |a| = 1, we have that

inf a-y> |z
erA(x)
But for any given a, inf ey, (») @ -y = infycp, (») @ - 8 = da(x, A) as explained
before. That is, supq;|q—1 da(z, 4) > |2| = inf ey, () [y|- This completes the
proof. O



Now we are ready to establish the inequality of Talagrand. The proof is via
induction. Consider n = 1, given set A. Now,

0, forze A

D(x) = s inf d,(z,y) = inf 1 —
() up inf dy(z,y) inf (x #y) {1’ forz ¢ A

a€R? Ja|=1YEA

Then,

/exp(D2/4)dP: /AeXp(O)dP—i-/cexp(l/él)dP

= P(A) + e"*(1 — P(A))
1/4 1/4 L
—e/—(e/—l)P(A)gm 5)

Let f(z) = et/*—(e'/*~1)z and g(z) = 1. Because f(z) is a decreasing func-
tion of x, g(x) is a decreasing convex function. Thus, the result if established
forn = 1.
Induction hypothesis. Let it hold for some n. We shall assume for ease of the
proof that Q1 = Qo = ... =Q, = ... =Q. L

Let A C Q"1 Let B be its projection on Q™. Let A(w), w € € be section
of Aalong w: ifz € Q" w € Qthen z = (z,w) € Q"' We observe the
following:
if s € Ug(w)(z), then (s,0) € Ua(z). Because, for some y € Q" such that
(y,w) € A, s = 1(z # y). Therefore, (s5,0) = (1(z # y), l(w # w)) = 1(z #
(y,w)) where (y,w) € A. Further, if t € Ug(z), then (¢,1) € Ua(z). This is
because of the following: B = {# € Q" : (Z,0) € A for some w € Q}. Now
ift € Ug(z), then 3 y € Bsuch thatt = 1(x # y). Now (t,1) = (1(z #
y),1(® # w)) = 1(z # (y,w)) as long as there exists @ so that (y,w) € A and
W # w.
Given this, it follows that if { € V) (2), ¢ € Vp(z), and 0 € [0, 1], then
((0E+ (1 —6)¢),1 —0) € V4(z). Recall that

D4(z)? = inf |y < (1-0)? +|0¢+ (1 —0)¢?
yeVa(z)

< (1—0)+0¢)° + (1 - 0)[¢]? (6)
Therefore,

D22 <(1—6)2+6 inf 24(1—0) inf 2
a(2)” < ( ) e €17+ ( )CGVB(I)\C\

= (1=0)* + 6D, (2)* + (1 - 0)D(x)°



By Holder’s inequality, and the induction hypothesis, for Vw € €2,

/ 6D2($M)2/4dp($)
1—-6)2+6D () —0)D%(x
S/nexp<( ) + A(w)(4) "‘(1 ) B( )>dP(x)
_9)? 0D, \(x)? 0D (2)2
<o) [ exp AL oy L= OPHEP 4
X ¥
o2
= (1 P Ex v,
< exp( L= o gy, qorp = 2g = Lo o)
_ p)2 0 1—6
o5 ([ exp(Ds@r/ar)) ([ exo(Dpa?/nar())
(1—6)? 1 1 ) . .
< exp( 1 )(P(A(w)))e(P(B))l % by induction hypothesis.
(=0 1 (PAWw)\
=0 () wm (i) @

(7) is true for any 0 € [0, 1], so for tightest upper bound, we shall optimize.
. . 1-6)2\

Claim: for any u € [0, 1], infye[o 1] exp(%)u <2—u.

Therefore, (7) reduces to

1 P(A(W)))
P(B)

Therefore,

I P(A(w))
< 55 Le- b ()
L, (PR

)
= 5B P(B)
1 .
S m, (Slnce U(2 — U) S 1 for all © S R) (8)

This completes the proof of Talagrand’s inequality.
Claim: f(u) = u(2 —u) = f(u) = 2—2u = u* = 1 = max, f(u) =

9



F1) = 1.

Proof. To establish: infyeg 1] exp((l_f)Q)u_e <2—-uw
ifu>e 120 =1+ 2logu = 17_9 = —logu = % = log?(u) and

u—@ — e—@logu — e~ logue—2log2u‘ Thus,

1—0)?
exp(( ) Ju? = exp(log? u — 21log? u — log u) = exp(—logu — log? u)
We have that
~1/2 1 1 9 1
1>u>e :>0210gu2—§:>0§—10gu§§,Oglog ugz

fl@)=—z—a2*: 2€[-1/2,0]; f(x)=—1—22<O0forz € [-1/2,0]

| =

= exp(—logu — log® u) <

and for u > ¢~3 which implies that 2 — u > exp(— log u — log? u). O

10
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