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Concentration Inequalities and Applications  

Content.  

Talagrand’s inequality   
Let (Ωi, Fi, µi) be probability spaces (i = 1, ..., n). Let µ = µ1 ... µn be
 
product measure on X = Ω1 × ... × Ωn. Let x = (x1, ..., xn) ∈ X be a point in
 
this product space.
 
Hamming distance over X:
 

nn 
d(x, y) = |{i ≤ i ≤ n : xi  1{xi  = yi}| = =yi}

i=1 

α-weighted Hamming distance over X for a ∈ Rn :+

nn 
(x, y) = da ai1{xi= yi}

i=1 

2Also |a| = ai .
 
Control-distance from a set: for set A ⊆ X , and x ∈ X:
 

Dc 
A(x) = sup da(x, A) = inf{da(x, y) : y ∈ A}

|a|=1 

Theorem 1 (Talagrand). For every measurable non-emply set A and product-
measure µ,  

(Dc 
4 µ(A)

exp(
1 

A)
2)dµ ≤ 

1 

In particular, 
t21 

µ({DA
c ≥ t}) ≤ exp(− ) 

µ(A) 4 
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2 Application of Talagrand’s Inequality 

2.1 Concentration of Lipschitz functions. 

Let F : X → R for product space X = Ω1 × ...×Ωn such that for every x ∈ X , 
there exists a ≡ a(x) ∈ Rn with |a| = 1 so that for each y ∈ Y ,+ 

F (x) ≤ F (y) + da(x, y) (1) 

Why does every 1-Lipschitz function is essentially like (1)? 
Consider a 1-Lipschitz function f : X → R such that n 

|f(x) − f(y)| ≤ |xi − yi| (defined on Ωi) for all x, y ∈ X . 
i 

Let di = maxx,y∈Ω |xi − yi|. We assume di is bounded for all i. Then, n n 
|f(x) − f(y)| ≤ |xi − yi| ≤ 1{xi=yi}di 

i i 

Therefore, nf(x) − f(y) di di≤ 1{xi=yi} = da(x, y) with ai = 
d2 

i d2 d2 
i i i i i 

f(x)Thus F (x) = ||d||2 
where ||d||2 = d2 

i i . 
Let A = {F ≤ m}. By definition of Dc (x),A

Dc 
A(x) = sup da(x, A) ≥ da(x, y) 

a:|a|=1 

for a given a such that |a| = 1 and y ∈ A. Now for any y ∈ A, by definition 
F (y) ≤ m. Then, 

F (x) ≤ F (y) + da(x, y) ≤ m + Dc 
A(x) 

which implies {F ≥ m + r} ⊆ {Dc (x) ≥ r}. By Talagrand’s inequality, for A

any r ≥ 0, 

P({f ≥ m + r}) ≤ P({Dc 
A ≥ r}) ≤ 

1 
P(A) 

exp(− 
r2 

4 
) 

That is, 

P({F ≤ m})P({F ≥ m + r}) ≤ exp(− 
r2 

4 
) (2) 
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The median of F , mF is precisely such that 

1 1
P(F ≤ mF ) ≥ , P(F ≥ mF ) ≥ 

2 2 
Choose m = mF , m = mF − r in (2) to obtain: 

2 2r r
P(F ≥ mF + r) ≤ 2 exp(− ), P(F ≤ mF − r) ≤ 2 exp(− ) (3)

4 4 
Thus, 

2r
P(|F − mF | ≥ r) ≤ 4 exp(− )

4 

2.2 Further Application for Linear Functions 

Consider the independent random variables Y1, ..., Yn on some probability space 
(Ω, F , P). Let the constants (ui, vi), 1 ≤ i ≤ n such that 

ui ≤ Yi ≤ vi 
nSet Z = supt∈T < t, Y >≡ i=1 tiYi where T is some finite, countable or 

compact set of vectors in R+. We would be interested in situations where n 
2σ2 = sup ti (vi − ui)2 ≤ ∞ 

t∈T i 

We wish to apply (3) to this setting by choosing 

F (x) = sup < t, x > 
t∈T  nwhere x ∈ X and X = [ui, vi]. Given that T is compact, F (x) =<i=1

t ∗(x), x > for some t = t ∗(x) ∈ T , given x. 

nn n n 
F (x) = tixi ≤ tiyi + |ti||yi − xi|

i=1 i i n n 
≤ tiyi + |ti|(vi − ui)1(yi=xi) (let di = |ti|(vi − ui)) . 

i i 

≤ sup < ˜ 1(yit, y > +( 
n di 

= xi))||d||2 
˜ ||d||2t∈T i  n 

= F (y) + da(x, y)||d||2 (where let σ = ||d||2 = sup t2(vi − ui)2)i 
t∈T 

= F (y) + σda(x, y) (4) 
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By selection of f ≡ 1 F , (3) can be applied to f :σ 

2r
P(|f − mf | ≥ r) ≤ 4 exp(− )

4 
γLet r = , then P(|σf − σmf | ≥ γ) ≤ 4 exp(−

4
γ
σ

2

2 ). That is, σ 

γ2 
P(|F − mF | ≥ γ) ≤ 4 exp(− )

4σ2 

Now, 
∞ 

E[F ] = P(F ≥ s)ds (assume t ≡ 0 ∈ T ) 
0 
mF ∞ 

≤ 1ds + P(F ≥ mF + γ)dγ 
0 0 

∞ γ ≤ mF + 2 exp(− )dγ 
0 4σ2 

∞ γ2 
≤ mF + 2 exp(− )dγ 

0 4σ2 

√ ∞ 1 γ2 
= mF + 2 8πσ2 √ exp(− )dγ 

4σ2 
0 2π4σ2 

√ 
= mF + 2 2πσ 

Thus, √ 
|E[F ] − mF | ≤ 2 2πσ 

2.3 More Intricate Application 

Longest increasing subsequence:
 
Let X1, ..., Xn be points in [0, 1] chosen independently as a product measure.
 
Let Ln(X1, ..., Xn) be the length of longest increasing subsequence. (Note that
 
Ln(·) is not obviously Lipschitz). Talagrand’s inequality implies its concentra­
tion.
 

Lemma 1. Let mn be median of Ln. Then for any r > 0, we have 

2r
P(Ln ≥ mn + r) ≤ 2 exp(− )

4(mn + r)

2r
P(Ln ≤ mn − r) ≤ 2 exp(− )

4mn 

4 

∫
∫ ∫

∫
∫

∫



 

 

 

Proof. Let us start by establishing first inequality. Select A = {Ln ≤ mn}. 
Clearly, by definition P(A) ≥ 1 . For a x such that Ln(x) > mn, (i.e. x ∈ A),2 
consider any y ∈ A. Now, let set I ⊆ [n] be indices that give rise to longest 
increasing subsequence in x: i.e. say I = {i1, ..., ip} then xi1 < xi2 < ... < xip 

and p is the maximum length of any such increasing subsequence of x. Let 
J = {i ∈ I : xi = yi} for given y. Since I\J is an index set that corresponds 
to a increasing subsequence of y (since for i ∈ I\J ; xi = yi and I is index set 
of increasing subsequence of I); we have that (using fact that Ln(y) ≤ mn as 
y ∈ A) 

|I\J | ≤ mn 

That is, 

Ln(x) = |I| ≤ |I\J | + |J |n 
≤ Ln(y) + 1(xi = yi) 

i∈I 
n( n 1 ≤ Ln(y) + Ln(x)[ ( 1(i ∈ I)1(xi = yi)] 

i=1 Ln(x) 

Define	 ⎧ ⎨√ 1 , if i ∈ I 
Ln(x)ai(x) = ⎩0, o.w. 

Then |a| = 1 since |I| = Ln(x) by definition, and hence, (	 ( 
(x)DcLn(x) ≤ Ln(y) + Ln(x)da(x, y) ≤ mn + Ln A(x) 

Equivalently, 
Ln(x) − mnDc (A(x) ≥ 

Ln(x) 

For x such that Ln(x) ≥ mn + r, the RHS of ahove is minimal when Ln(x) = 
mn + r. Therefore, we have 

Ln(x) − mnDc 
A(x) ≥ ( 

Ln(x) 

For x such that Ln(x) ≥ mn + r, the RHS of above is minimal when Ln(x) = 
mn + r. Therefore, we have 

r Dc 
A(x) ≥ √ 

mn + r 
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That is
 

r 
Ln(x) ≥ mn + r ⇒ Dc √ for A = {Ln ≤ mnA(x) ≥ }

mn + r 

Putting these together, we have 

2r 1 r≥ mn + r) ≤ P(Dc √ ) ≤ exp(− )P(Ln A ≥ 
mn + r 2P (A) 4(mn + r)

But P(A) = P(Ln ≤ mn) ≥ 1 , we have that 2 

2r
P(Ln ≥ mn + r) ≤ 2 exp(− )

4(mn + r)

To establish lower bound, replace argument of the above with x such that Ln(x) ≥ 
s + u, A = {Ln ≤ s}. Then we obtain, 

u Dc √A(x) ≥ 
s + u 

Select s = mn − r, u = r. Then whenever x is such that Ln(x) ≥ s + u = mn 
and for A = {Ln ≤ s} = {Ln ≤ mn − r}. 

r Dc 
A(x) ≥ √ 

mn 

Thus, 

2r 1 r
P(Ln ≥ mn) ≤ P(DA

c ≥ ) ≤ exp(− ) 
mn P(Ln ≤ mn − r) 4mn 

which implies 
2r

P(Ln ≤ mn − r) ≤ 2 exp(− )
4mn 

This completes the proof. 

Proof of Talagrand’s Inequality 

Preparation. Given set A, x ∈ X: Dc (x) = sup
+ 
(da(x, A) = infy∈A da(x, y)).A a∈Rn 

Let 

UA(x) = {s ∈ {0, 1}n : ∃y ∈ A with s £ 1(x = y)} = {1(x = y) : y ∈ A} 

6 
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and let
 n n 
VA(x) = Convex-hull(UA(x)) = { αsS : αs = 1, αs ≥ 0 for all s ∈ UA(x)} 

s∈UA(x) 

Thus, 
x ∈ A ⇔ 1(x = x) = 0 ∈ UA(x) ⇔ 0 ∈ VA(x) 

It can therefore be checked that 

Lemma 2. 
Dc 

A(x) = d(0, VA(x)) ≡ inf |y|
y∈VA(x) 

Proof. (i) Dc (x) ≤ infy∈VA(x) |y|: since infy∈VA(x)(y) is achieved, let Z beA

such that |Z| = infy∈VA(x) |y|. Now for any a ∈ Rn 
+, |a| = 1: 

inf a · y ≤ a · z ≤ |a||z| = |z|
y∈VA(x) 

Since infy∈VA(x) a · y is linear programming, the minimum is achieved at an 
extreme point. That is, there exists s ∈ UA(x) such that 

inf a · y = inf a · s = inf da(x, y) for some y ∈ A. 
y∈VA(x) s∈UA(x) y∈A 

Since this is true for all a, it follows that, 

sup inf da(x, y) ≤ |z| ≡ inf |y|
y∈A|a|=1,a∈Rn y∈VA(x)

+ 

(ii) Dc (x) ≥ infy∈VA(x) |y|: Let z be the one achieving minimum in VA(x).A
2Then due to convexity of the objective (equivalently |y|2 = y = f(y))i 

and of the domain, we have for any y ∈ VA(x), vf(z)(y − z) ≥ 0 for any 
y ∈ VA(x). vf(z) = v(z · z) = 2z. Therefore the condition implies 

z 
(y − z)z ≥ 0 ⇔ y · z ≥ z · z = |z|2 ⇒ y · ≥ |z|

|z| 
zThus, for a = ∈ Rn 
|z| +, |a| = 1, we have that
 

inf a · y ≥ |z| 
y∈VA(x) 

But for any given a, infy∈VA(x) a · y = infs∈UA(x) a · s = da(x, A) as explained 
before. That is, supa:|a|=1 da(x, A) ≥ |z| = infy∈VA(x) |y|. This completes the 
proof. 
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Now we are ready to establish the inequality of Talagrand. The proof is via 
induction. Consider n = 1, given set A. Now,  

0, for x ∈ A 
Dc 

A(x) = sup inf da(x, y) = inf 1(x = y) =
a∈Rn ,|a|=1 y∈A y∈A 1, for x /∈ A 

+

Then, 

exp(D2/4)dP = exp(0)dP + exp(1/4)dP 
AcA 

= P (A) + e 1/4(1 − P (A)) 

= e 1/4 − (e 1/4 − 1)P (A) ≤ 
1 

(5)
P (A) 

Let f(x) = e1/4 −(e1/4 −1)x and g(x) = 1 . Because f(x) is a decreasing func­x 
tion of x, g(x) is a decreasing convex function. Thus, the result if established 
for n = 1. 
Induction hypothesis. Let it hold for some n. We shall assume for ease of the 
proof that Ω1 = Ω2 = ... = Ωn = ... = Ω. L 

Let A ⊂ Ωn+1. Let B be its projection on Ωn. Let A(ω), ω ∈ Ω be section 
of A along ω: if x ∈ Ωn , ω ∈ Ω then z = (x, ω) ∈ Ωn+1 . We observe the 
following: 
if s ∈ UA(ω)(x), then (s, 0) ∈ UA(z). Because, for some y ∈ Ωn such that 
(y, ω) ∈ A, s = 1(x = y). Therefore, (s, 0) = (1(x = y), 1(ω = ω)) = 1(z = 
(y, ω)) where (y, ω) ∈ A. Further, if t ∈ UB (x), then (t, 1) ∈ UA(z). This is 
because of the following: B = {x̃ ∈ Ωn : (x̃, ω̃) ∈ A for some ω̃ ∈ Ω}. Now 
if t ∈ UB (x), then ∃ y ∈ B such that t = 1(x = y). Now (t, 1) = (1(x = 
y), 1(ω̃ = ω)) = 1(z = (y, ω̃)) as long as there exists ω̃ so that (y, ω̃) ∈ A and 
ω̃ = ω. 
Given this, it follows that if ξ ∈ VA(ω)(x), ζ ∈ VB (x), and θ ∈ [0, 1], then 
((θξ + (1 − θ)ζ), 1 − θ) ∈ VA(z). Recall that 

Dc 
A(z)

2 = inf |y|2 ≤ (1 − θ)2 + |θξ + (1 − θ)ζ|2 
y∈VA(z) 

≤ (1 − θ)2 + θ|ξ|2 + (1 − θ)|ζ|2 (6) 

Therefore, 

Dc + θ inf |ξ|2 + (1 − θ) inf |ζ|2 
A(z)

2 ≤ (1 − θ)2 
ξ∈VA(ω)(x) ζ∈VB (x) 

= (1 − θ)2 + θDc
B (x)

2 
A(ω)(x)

2 + (1 − θ)Dc 
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By Hölder’s inequality, and the induction hypothesis, for ∀ω ∈ Ω, 

Dc (x,ω)2/4dP (x)A 

Ωn  
e   

(1 − θ)2 + θDc (x)2 + (1 − θ)Dc (x)A(ω) B
≤ exp dP (x) 

Ωn 4 

θDc (x)2  
(1 − θ)2 

A(ω) (1 − θ)Dc (x)2 
B≤ exp( ) exp( ) exp( ) dP (x)

4 Ωn 4 4   -    -
X Y 

(1 − θ)2 
= exp( )E[X · Y ]

4  
(1 − θ)2 

)E[Xp]1/pE[Y q]1/q
1 1  ≤ exp( , (for p = , q = : θ ∈ [0, 1])

4 θ 1 − θ   θ   1−θ(1 − θ)2 
= exp( ) exp(Dc (x)2/4)dP (x) B(x)

2/4)dP (x)A(ω) exp(Dc 
4 Ωn Ωn 

(1 − θ)2 1 1 ≤ exp( )( )θ( )1−θ by induction hypothesis. 
4 P (A(ω)) P (B)    −θ(1 − θ)2 1 P (A(ω)) 

= exp (7)
4 P (B) P (B)

(7) is true for any θ ∈ [0, 1], so for tightest upper bound, we shall optimize. 
(1−θ)2 

Claim: for any u ∈ [0, 1], infθ∈[0,1] exp( )u−θ ≤ 2 − u.4 
Therefore, (7) reduces to 

1 P (A(ω))≤ (2 − )
P (B) P (B) 

Therefore, 

Dc (x, ω)2 
exp( A )dP (x)dµ(ω) 

Ωn+1 4 
1 P(A(ω))≤ (2 − )dµ(ω)

P(B) P(B)Ω 
1 (P µ)(A)≤ (2 − )

P(B) P(B)  
1  ≤ , (since u(2 − u) ≤ 1 for all u ∈ R) (8)

(P µ)(A)

This completes the proof of Talagrand’s inequality. 
' ∗Claim: f(u) = u(2 − u) ⇒ f (u) = 2 − 2u ⇒ u = 1 ⇒ maxu f(u) = 

9 
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f(1) = 1. 

(1−θ)2 
Proof. To establish: infθ∈[0,1] exp( )u−θ ≤ 2 − u:4 

1−θ (1−θ)2 
if u ≥ e−1/2: θ = 1 + 2 log u ⇒ = − log u ⇒ = log2(u) and2 4  
−θ −θ log u − log u −2 log2  

u = e = e e u. Thus, 

(1 − θ)2 
exp( )u −θ = exp(log2 u − 2 log2 u − log u) = exp(− log u − log2 u) 

u 

We have that 

1 1 1 
1 ≥ u ≥ e −1/2 ⇒ 0 ≥ log u ≥ − ⇒ 0 ≤ − log u ≤ , 0 ≤ log2 u ≤ 

2 2 4 

and 

2f(x) = −x − x : x ∈ [−1/2, 0]; f 
' 
(x) = −1 − 2x ≤ 0 for x ∈ [−1/2, 0] 

Thus, 

1 1 1 1 − log u − log2 u ≤ − ≤ ⇒ exp(− log u − log2 u) ≤ 
2 4 4 4 

and for u ≥ e − 
2
1 

which implies that 2 − u ≥ exp(− log u − log2 u). 
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