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Introduction to Ito calculus.  

Content. 

1. Spaces L2, M2, M2,c. 

2. Quadratic variation property of continuous martingales. 

Doob-Kolmogorov inequality. Continuous time version 

Let us establish the following continuous time version of the Doob-Kolmogorov 
inequality. We use RCLL as abbreviation for right-continuous function with left 
limits. 

Proposition 1. Suppose Xt ≥ 0 is a RCLL sub-martingale. Then for every 
T, x ≥ 0 

E[X2 ]TP( sup Xt ≥ x) ≤ .
2x0≤t≤T 

Proof. Consider any sequence of partitions Πn = {0 = tn < tn < . . . < tn = 0 1 Nn 
T } such that Δ(Πn) = maxj |tn − tn| → 0. Additionally, suppose that the j+1 j 
sequence Πn is nested, in the sense the for every n1 ≤ n2, every point in Πn1 is 
also a point in Πn2 . Let Xn = Xtn where j = max{i : ti ≤ t}. Then Xn is a t tj 
sub-martingale adopted to the same filtration (notice that this would not be the 
case if we instead chose right ends of the intervals). By the discrete version of 
the D-K inequality (see previous lectures), we have 

E[X2 ]TP(max Xt
n 
j ≥ x) = P(sup Xn ≥ x) ≤ 

2 .t
j≤Nn xt≤T 

By RCLL, we have supt≤T X
n → supt≤T Xt a.s. Indeed, fix E > 0 andt 

find t0 = t0(ω) such that Xt0 ≥ supt≤T Xt − E. Find n large enough and 

1 



2 

j = j(n) such that tj(n)−1 ≤ t0 ≤ tnj(n). Then tj(n) → t0 as n → ∞. 
By right-continuity of X , Xtj(n) → Xt0 . This implies that for sufficiently 
large n, supt≤T Xt

n ≥ Xtj(n) ≥ Xt0 − 2E, and the a.s. convergence is es­
tablished. On the other hand, since the sequence Πn is nested, then the se­
quence supt≤T X

n is non-decreasing. By continuity of probabilities, we obtain t 
P(supt≤T X

n ≥ x) → P(supt≤T Xt ≥ x).t 

Stochastic processes and martingales 

Consider a probability space (Ω, F , P) and a filtration (Ft, t ∈ R+). We assume 
that all zero-measure events are ”added” to F0. Namely, for every A ⊂ Ω, such 
that for some A' ∈ F with P(A') = 0 we have A ⊂ A' ∈ F , then A also belongs 
to F0. A filtration is called right-continuous if Ft = ∩E>0Ft+E. From now 
on we consider exclusively right-continuous filtrations. A stochastic process 
Xt adopted to this filtration is a measurable function X : Ω × [0, ∞) → R, 
such that Xt ∈ Ft for every t. Denote by L2 the space of processes s.t. the T  TRiemann integral Xt(ω)dt exists a.s. and moreover E[ X2dt] < ∞ fort0 0 
every T > 0. This implies P(ω :

 T |Xt(ω)|dt < ∞, ∀T ) = 1.0 
Let M2 consist of square integrable right-continuous martingales with left 

limits (RCLL). Namely E[X2] < ∞ for every X ∈ M2 and t ≥ 0. Finallyt 
M2,c ⊂ M2 is a further subset of processes consisting of a.s. continuous 
processes. For each T > 0 we define a norm on M2 by IXI = IXIT = 
(E[X2 ])1/2. Applying sub-martingale property of X2 we have E[X2 ] ≤ E[X2 ]T t T1 T2 
for every T1 ≤ T2. 

A stochastic process Yt is called a version of Xt if for every t ∈ R+, P(Xt = 
Yt) = 1. Notice, this is weaker than saying P(Xt = Yt, ∀t) = 1. 

Proposition 2. Suppose (Xt, Ft) is a submartingale and t → E[Xt] is a con­
tinuous function. Then there exists a version Yt of Xt which is RCLL. 

We skip the proof of this fact. 

Proposition 3. M2 is a complete metric space and (w.r.t. I · I) M2,c is a closed 
subspace of M2. 

Proof. We need to show that if X(n) ∈ M2 is Cauchy, then there exists X ∈ 
M2 with IX(n) − XI → 0. 

Assume X(n) is Cauchy. Fix t ≤ T Since X(n) − X(m) is a martingale 
(n) (m) (n) (m) (n)as well, E[(X − Xt )2] ≤ E[(XT − X )2]. Thus Xt is Cauchy as t T 

well. We know that the space L2 of random variables with finite second moment 
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is closed. Thus for each t there exists a r.v. Xt s.t. E[(X(n) − Xt)
2] → 0 ast 

n → ∞. We claim that since X(n) ∈ Ft and X(n) is RCLL, then (Xt, t ≥ 0) ist 
adopted to Ft as well (exercise). Let us show it is a martingale. First E[|Xt|] < 
∞ since in fact E[X2] < ∞. Fix s < t and A ∈ Fs. Since each X(n) is a t t 

(n) (n)martingale, then E[X 1(A)] = E[Xs 1(A)]. We have t 

− X(n)E[Xt1(A)] − E[Xs1(A)] = E[(Xt − X(n)
)1(A)] − E[(Xs )1(A)]t s 

(n) (n) (n)We have E[|Xt − X |1(A)] ≤ E[|Xt − X |] ≤ (E[(Xt − X )2])1/2 → 0t t t 
as n → ∞. A similar statement holds for s. Since the left-hand side does not 
depend on n, we conclude E[Xt1(A)] = E[Xs1(A)] implying E[Xt|Fs] = Xs, 
namely Xt is a martingale. Since E[Xt] = E[X0] is constant and therefore 
continuous as a function of t, then there exists version of Xt which is RCLL. 
For simplicity we denote it by Xt as well. We constructed a process Xt ∈ M2 

s.t. E[(X(n) − Xt)
2] → 0 for all t ≤ T . This proves completeness of M2.t 

Now we deal with closeness of M2,c. Since X(n) − Xt is a martingale, t 
(n) (n)

(X − Xt)
2 is a submartingale. Since Xt ∈ M2, then (X − Xt)

2 is RCLL. t t 
Then submartingale inequality applies. Fix E > 0. By submartingale inequality 
we have 

1(n) (n)P(sup |X − Xt| > E) ≤ E[(X − XT )
2] → 0,t T 

t≤T E2 

as n → ∞. Then we can choose subsequence nk such that 

1(nk)P(sup |X − Xt| > 1/k) ≤ .t 
t≤T 2k 

(nk)Since 1/2k is summable, by Borel-Cantelli Lemma we have supt≤T |X −t 
(nk)Xt| → 0 almost surely: P({ω ∈ Ω : supt≤T |X (ω) − Xt(ω)| → 0}) = t 

1. Recall that a uniform limit of continuous functions is continuous as well 
(first lecture). Thus Xt is continuous a.s. As a result Xt ∈ M2,c and M2,c is 
closed. 

Doob-Meyer decomposition and quadratic variation of processes in M2,c 

Consider a Brownian motion Bt adopted to a filtration Ft. Suppose this filtration 
makes Bt a strong Markov process (for example Ft is generated by B itself). 
Recall that both Bt and B2 − t are martingales and also B ∈ M2,c. Finallyt 
recall that the quadratic variation of B over any interval [0, t] is t. There is a 
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generalization of these observations to processes in M2,c. For this we need to 
recall the following result. 

Theorem 1 (Doob-Meyer decomposition). Suppose (Xt, Ft) is a continuous 
non-negative sub-martingale. Then there exist a continuous martingale Mt and 
a.s. non-decreasing continuous process At with A0 = 0, both adopted go Ft 
such that Xt = At + Mt. The decomposition is unique in the almost sure sense. 

The proof of this theorem is skipped. It is obtained by appropriate discretiza­
tion and passing to limits. The discrete version of this result we did earlier. See 
[1] for details. 

Now suppose Xt ∈ M2,c. Then X2 is a continuous non-negative submartin­t 
gale and thus DM theorem applies. The part At in the unique decomposition of 
X2 is called quadratic variation of Xt (we will shortly justify this) and denoted t 
(Xt). 

Theorem 2. Suppose Xt ∈ M2,c. Then for every t > 0 the following conver­
gence in probability takes place  

lim (Xtj+1 − Xtj )
2 → (Xt), 

Πn:Δ(Πn)→0
0≤j≤n−1 

where the limit is over all partitions Πn = {0 = t0 < t1 < · · · < tn = t} and 
Δ(Πn) = maxj |tj − tj−1|. 

Proof. Fix s < t. Let X ∈ M2,c. We have 

E[(Xt − Xs)
2 − ((Xt) − (Xs))|Fs] = E[X2 − 2XtXs + X2 − ((Xt) − (Xs))|Fs]t s 

= E[X2|Fs] − 2XsE[Xt|Fs] + X2 − E[(Xt)|Fs] + (Xs)t s 

= E[X2 − (Xt)|Fs] − X2 + (Xs)t s 

= 0. 

Thus for every s < t ≤ u < v by conditioning first on Fu and using tower 
property we obtain     
E (Xt − Xs)

2 − ((Xt) − (Xs)) (Xu − Xv)
2 − ((Xu) − (Xv)) = 0 (1) 

The proof of the following lemma is application of various ”carefully placed” 
tower properties and is omitted. See [1] Lemma 1.5.9 for details. 

Lemma 1. Suppose X ∈ M2 satisfies |Xs| ≤ M a.s. for all s ≤ t. Then for 
every partition 0 = t0 ≤ · · · ≤ tn = t    2 

E )2 ≤ 6M4 .(Xtj+1 − Xtj 

j 
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Lemma 2. Suppose X ∈ M2 satisfies |Xs| ≤ M a.s. for all s ≤ t. Then 

lim E[ (Xtj+1 − Xtj )
4] = 0, 

Δ(Πn)→0 
j 

where Πn = {0 = t0 < · · · < tn = t}, Δ(Πn) = maxj |tj+1 − tj |. 

Proof. We have 

(Xtj+1 − Xtj )
4 ≤ (Xtj+1 − Xtj )

2 sup{|Xr − Xs|2 : |r − s| ≤ Δ(Πn)}. 
j j 

Applying Cauchy-Schwartz inequality and Lemma 1 we obtain 

2 2 
E[ (Xtj+1 − Xtj )

4] ≤ E (Xtj+1 − Xtj )
2 E[sup{|Xr − Xs|4 : |r − s| ≤ Δ(Πn)}] 

j j 

≤ 6M4E[sup{|Xr − Xs|4 : |r − s| ≤ Δ(Πn)}]. 

Now X(ω) is a.s. continuous and therefore uniformly continuous on [0, t]. 
Therefore, a.s. sup{|Xr − Xs|2 : |r − s| ≤ Δ(Πn)} → 0 as Δ(Πn) → 0. 
Also |Xr − Xs| ≤ 2M a.s. Applying Bounded Convergence Theorem, we ob­
tain that E[sup{|Xr − Xs|4 : |r − s| ≤ Δ(Πn)}] converges to zero as well and 
the result is obtained. 

We now return to the proof of the proposition. We first assume |Xs| ≤ M 
and (Xs) ≤ M a.s. for s ∈ [0, t]. 

We have (using a telescoping sum) 

2   2 
E (Xtj+1 − Xtj )

2 − (Xt) = E (Xtj+1 − Xtj )
2 − ((Xtj+1 ) − (Xtj ))

j j

When we expand the square the terms corresponding to cross products with 
j1  = j2 disappear due to (1). Thus the expression is equal to 

2 
E (Xtj+1 − Xtj )

2 − ((Xtj+1 ) − (Xtj )) 
j   

≤ 2E (Xtj+1 − Xtj )
4 + 2E[ ((Xtj+1 ) − (Xtj ))2]. 

j j 

The first term converges to zero as Δ(Πn) → 0 by Lemma 2. 
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We now analyze the second term. Since (Xt) is a.s. non-decreasing, then 

((Xtj+1 ) − (Xtj ))2 ≤ ((Xtj+1 ) − (Xtj )) sup {(Xr) − (Xs) : |r − s| ≤ Δ(Πn)}
0≤s≤r≤tj j 

Thus the expectation is upper bounded by 

E[(Xt) sup {(Xr) − (Xs) : |r − s| ≤ Δ(Πn)}] (2) 
0≤s≤r≤t

Now (Xt) is a.s. continuous and thus the supremum term converges to zero a.s. 
as n → ∞. On the other hand a.s. (Xt)((Xr) − (Xs)) ≤ 2M2 . Thus using 
Bounded Convergence Theorem, we obtain that the expectation in (2) converges 
to zero as well. We conclude that in the bounded case |Xs|, (Xs) ≤ M on [0, t], 
the quadratic variation of Xs over [0, t] converges to (Xt) in L2 sense. This 
implies convergence in probability as well. 

It remains to analyze the general (unbounded) case. Introduce stopping 
times TM for every M ∈ R+ as follows 

TM = min{t : |Xt| ≥ M or (Xt) ≥ M} 

Consider Xt
M £ Xt∧TM . Then XM ∈ M2,c and is a.s. bounded. Further 

since X2 − (Xt) is a martingale, then X2 − (Xt∧TM ) is a bounded martin-t t∧TM 
gale. Since Doob-Meyer decomposition is unique, we that (Xt∧TM ) is indeed 
the unique non-decreasing component of the stopped martingale Xt∧TM . There 
is a subtlety here: XM is a continuous martingale and therefore it has its own t 
quadratic variation (XM ) - the unique non-decreasing a.s. process such that t 
(XM )2 − (XM ) is a martingale. It is a priori non obvious that (XM ) is the t t t 
same as (Xt∧TM ) - quadratic variation of Xt stopped at TM . But due to unique­
ness of the D-M decomposition, it is. 

Fix E > 0, t ≥ 0 and find M large enough so that P(TM < t) < E/2. This is 

  possible since Xt and (Xt) are continuous processes. Now we have 

)2 − (Xt) > E 
   P (Xtj+1 − Xtj 

j      
   > E, t ≤ TM 

)2 − (Xt∧TM 

)2 − (Xt)≤ P + P(TM < t)(Xtj+1 

j 
− Xtj    = P + P(TM(Xtj+1∧TM − Xtj ∧TM ) > E, t ≤ TM < t)  

j     ) > E + P(TM < t).)2 − (Xt∧TM
≤ P (Xtj+1∧TM − Xtj ∧TM 

j 

6 

∑ ∑

( ∑ )
( ∑ )
( ∑ )
( ∑ )



         

         

4 

We already established the result for bounded martingales and quadratic vari­
ations. Thus, there exists δ = δ(E) > 0 such that, provided Δ(Π) < δ, we 
have 

P (Xtj+1∧TM − Xtj ∧TM )
2 − (Xt∧TM ) > E < E/2. 

j 

We conclude that for Π = {0 = t0 < t1 < · · · < tn = t} with Δ(Π) < δ, we 
have 

P (Xtj+1 − Xtj )
2 − (Xt) > E < E. 

j 

Additional reading materials 

• Chapter I. Karatzas and Shreve [1] 
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