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Introduction to Ito calculus.
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2. Quadratic variation property of continuous martingales.

1 Doob-Kolmogorov inequality. Continuous time version

Let us establish the following continuous time version of the Doob-Kolmogorov
inequality. We use RCLL as abbreviation for right-continuous function with left
limits.

Proposition 1. Suppose X; > 0 is a RCLL sub-martingale. Then for every
T, x>0

E[X7]
L

P( sup X; > 7)<
0<t<T x

Proof. Consider any sequence of partitions I, = {0 =t <t} <... < N, =
T'} such that A(Il,,) = max; [t},; — t7| — 0. Additionally, suppose that the
sequence 11, is nested, in the sense the for every n1 < no, every point in II,,, is
also a point in IL,,. Let Xi" = Xy where j = max{i : {; < t}. Then X{"is a
sub-martingale adopted to the same filtration (notice that this would not be the
case if we instead chose right ends of the intervals). By the discrete version of
the D-K inequality (see previous lectures), we have

> = > <
P(Jlrglz]i\/)i Xy > ) ]P’(ilglg X >z) < =

By RCLL, we have sup,<p X{" — sup,<p X a.s. Indeed, fix ¢ > 0 and
find tg = to(w) such that X3, > sup;<p X; — €. Find n large enough and



J = j(n) such that t;,,y_; < to < - Then i) — to as n — oo.
By right-continuity of X, X; =~ — Xj. This implies that for sufficiently
large n, sup;<r Xp > th(n) > X, — 2¢, and the a.s. convergence is es-
tablished. On the other hand, since the sequence II,, is nested, then the se-
quence sup,« X;' is non-decreasing. By continuity of probabilities, we obtain
Plsup<p X7 > @) = P(supyep X > @),

O

2 Stochastic processes and martingales

Consider a probability space (€2, F,P) and a filtration (F, t € R;). We assume
that all zero-measure events are "added” to F. Namely, for every A C €2, such
that for some A’ € F withIP(A’) = O we have A C A’ € F, then A also belongs
to Fp. A filtration is called right-continuous if ; = NesoFtpe. From now
on we consider exclusively right-continuous filtrations. A stochastic process
X adopted to this filtration is a measurable function X : Q x [0,00) — R,
such that X; € F; for every t. Denote by L2 the space of 7Processes s.t. the
Riemann integral fOT Xy (w)dt exists a.s. and moreover E[[; X7dt] < oo for
every T > 0. This implies P(w : [, |X;(w)|dt < 00, ¥T) = 1.

Let M consist of square integrable right-continuous martingales with left
limits (RCLL). Namely E[X?] < oo for every X € Mo and t > 0. Finally
My . C Ms is a further subset of processes consisting of a.s. continuous
processes. For each T' > 0 we define a norm on My by | X|| = || X|r =
(E[X2])'/2. Applying sub-martingale property of X? we have ]E[X%l] < E[X%z]
for every 71 < T5.

A stochastic process Y is called a version of X, if forevery t € R, P(X; =
Y;) = 1. Notice, this is weaker than saying P(X; = Y}, Vt) = 1.

Proposition 2. Suppose (X, F;) is a submartingale and t — E[X,] is a con-
tinuous function. Then there exists a version Yy of Xy which is RCLL.

We skip the proof of this fact.

Proposition 3. M, is a complete metric space and (w.rt. |- ||) Ma . is a closed
subspace of Ma.

Proof. We need to show that if X(™) € My is Cauchy, then there exists X €
Mo with || X — X || — 0.

Assume X is Cauchy. Fix t < T Since X(™ — X(™) is a martingale
as well, IE[(Xt(n) - Xt(m))Q] < E[(Xén) - Xém))Q]. Thus Xt(n) is Cauchy as
well. We know that the space Ly of random variables with finite second moment



is closed. Thus for each ¢ there exists a r.v. X; s.t. E[(Xt(n) — X¢)?] — Oas
n — oo. We claim that since Xt(n) € F; and X is RCLL, then (X, t>0)is
adopted to F; as well (exercise). Let us show it is a martingale. First E[| X;|] <
oo since in fact E[X?] < co. Fix s < tand A € F,. Since each X" is a
martingale, then E[Xt(n)l(A)] = E[Xs(n)l(A)]. We have

E[X;1(A)] — E[X,1(4)] = E[(X; — X")1(4)] - E[(Xs — X™)1(A)]

We have E[|X; — X [1(4)] < E[|1X; — X™|) < (B[(X; — X™)2)/2 50
as n — o0o. A similar statement holds for s. Since the left-hand side does not
depend on n, we conclude E[X;1(A)] = E[X1(A)] implying E[X¢|Fs] = X,
namely X; is a martingale. Since E[X;] = E[X(] is constant and therefore
continuous as a function of ¢, then there exists version of X; which is RCLL.
For simplicity we denote it by X; as well. We constructed a process X; € Mo
s.t. E[(Xt(n) — X¢)?] = O forall t < T. This proves completeness of M.

Now we deal with closeness of Mj .. Since Xt(") — X; is a martingale,
(Xt(n) — X;)? is a submartingale. Since X; € Mo, then (Xt(n) — X;)%is RCLL.
Then submartingale inequality applies. Fix e > 0. By submartingale inequality
we have

n 1 n
Ploup | X{" — Xi| > ¢) < ZEI(X}” ~ Xr)] =0,
i<

as n — oo. Then we can choose subsequence n;, such that

1

P(sup | X" — X;| > 1/k) < o
t<T

)

Since 1/2* is summable, by Borel-Cantelli Lemma we have Sup;< |Xt(n’“ —
Xi| — 0 almost surely: P({w € Q : sup;<p ]Xt(n"’)(w) — Xi(w)| — 0}) =
1. Recall that a uniform limit of continuous functions is continuous as well

(first lecture). Thus X} is continuous a.s. As a result X; € Moy . and My is
closed. OJ

3 Doob-Meyer decomposition and quadratic variation of processes in Mo .

Consider a Brownian motion B; adopted to a filtration F;. Suppose this filtration
makes B, a strong Markov process (for example F; is generated by B itself).
Recall that both B; and Bf — t are martingales and also B € M .. Finally
recall that the quadratic variation of B over any interval [0,¢] is ¢. There is a



generalization of these observations to processes in My .. For this we need to
recall the following result.

Theorem 1 (Doob-Meyer decomposition). Suppose (Xy, F;) is a continuous
non-negative sub-martingale. Then there exist a continuous martingale My and
a.s. non-decreasing continuous process Ay with Ay = 0, both adopted go F;
such that Xy = A; + M;. The decomposition is unique in the almost sure sense.

The proof of this theorem is skipped. It is obtained by appropriate discretiza-
tion and passing to limits. The discrete version of this result we did earlier. See
[1] for details.

Now suppose X; € My .. Then Xt2 is a continuous non-negative submartin-
gale and thus DM theorem applies. The part A; in the unique decomposition of
X? is called quadratic variation of X; (we will shortly justify this) and denoted
(Xt).

Theorem 2. Suppose X; € Moy .. Then for everyt > 0 the following conver-
gence in probability takes place

li X —X )= (X
Hn:A%lr'EL)_mOSjgl_l( tit1 t]) < t>7

where the limit is over all partitions II,, = {0 =ty < t; < --- < t, =t} and
A(II,) = max; [t; — tj_1].
Proof. Fix s <t.Let X € My .. We have
BI(X, — X.)? — ((X0) — (X.))|] = E[X - 2X,X, + X2~ ((X) — (X))
= B[XP|F] = 2XE[X| 7] + X7 — E[(X0)[Fo] + (Xo)
= B[ - (X015 - X2+ (X
=0.

Thus for every s < t < u < v by conditioning first on F;, and using tower
property we obtain

B (X0 = X,)2 = ((X0) — (X)) (Xu = X0)? = (Xu) = (X)) =0 ()

The proof of the following lemma is application of various “’carefully placed”
tower properties and is omitted. See [1] Lemma 1.5.9 for details.

Lemma 1. Suppose X € Mo satisfies | Xs| < M a.s. forall s < t. Then for
every partition ) =t < --- <t, =1

E(Z(thﬂ - th)2>2 <6M*.

J



Lemma 2. Suppose X € My satisfies | Xs| < M a.s. for all s < t. Then

lim B[S (X,

) [ : +1

- th)4] = 07

where 11,, = {0 =ty < - <ty = t}, A(Hn) = maxj ‘tj-i-l — t]‘|.

Proof. We have

S (K = X))t < (X, — Xy sup{| X, — X2 1 |r — 5| < A(TL,) )
J J

Applying Cauchy-Schwartz inequality and Lemma 1 we obtain

(B2 G = X)) < B( (X, = X0)?) Blsup{ X, — X[ Ir = o] < ATT))]

< 6ME[sup{|X, — X,|*: |r — 5] < A(IL,)}].

Now X (w) is a.s. continuous and therefore uniformly continuous on [0, t].
Therefore, a.s. sup{|X, — X,|? : |[r — s| < A(IL,)} — 0as A(II,,) — 0.
Also | X, — Xs| < 2M a.s. Applying Bounded Convergence Theorem, we ob-
tain that E[sup{| X, — X,|* : |r — s| < A(II,,)}] converges to zero as well and
the result is obtained. O

We now return to the proof of the proposition. We first assume | X| < M
and (X,) < M a.s. for s € [0, t].
We have (using a telescoping sum)

E(Z(th+1 - th)2 - <Xt>)2 = E(Z ((thﬂ - th)Q o (<th+1> - <th>))>2

J J

When we expand the square the terms corresponding to cross products with
j1 # jo disappear due to (1). Thus the expression is equal to

2

EY (Ko = X0)” = (Xe,,) = (X))
< 2B [ 30Xy — X)) + 2B ((Xry0) — (X)),

J J

The first term converges to zero as A(Il,,) — 0 by Lemma 2.



We now analyze the second term. Since (X}) is a.s. non-decreasing, then

D (Xiy) = (X4))? < Z((thﬂ) —(Xi;)) sup {{Xy) = (Xs) : |r —s| < A(IIn)}

j 0<s<r<t

Thus the expectation is upper bounded by

E[(Xy) sup {{Xy) = (Xs):[r —s] < A(Tln)}] 2

0<s<r<t

Now (X;) is a.s. continuous and thus the supremum term converges to zero a.s.
as n — 0o. On the other hand a.s. (X;)((X,) — (X,)) < 2M?2. Thus using
Bounded Convergence Theorem, we obtain that the expectation in (2) converges
to zero as well. We conclude that in the bounded case | X/, (Xs) < M on [0, ¢],
the quadratic variation of X over [0, ¢] converges to (X;) in Lo sense. This
implies convergence in probability as well.

It remains to analyze the general (unbounded) case. Introduce stopping
times 1y for every M € R as follows

Ty = min{t : |Xi| > M or (X;) > M)}

Consider XtM £ Xipty,- Then X M ¢ M and is a.s. bounded. Further
since X? — (X;) is a martingale, then th/\TM — (X¢aT,,) is a bounded martin-
gale. Since Doob-Meyer decomposition is unique, we that (Xyap,,) is indeed
the unique non-decreasing component of the stopped martingale X;r,,. There
is a subtlety here: X}/ is a continuous martingale and therefore it has its own
quadratic variation (XM) - the unique non-decreasing a.s. process such that
(XM)2 — (XM) is a martingale. It is a priori non obvious that (XM} is the
same as (Xya7,,) - quadratic variation of X; stopped at 7). But due to unique-
ness of the D-M decomposition, it is.

Fix € > 0,¢ > 0 and find M large enough so that P(T)s < t) < €/2. This is
possible since X; and (X;) are continuous processes. Now we have

IP’(‘ D (Kiyr — K1) - (Xt)’ > e)

IN

[P( > (Kiyer = X0,)? - <Xt>‘ > et < TM) Y P(Ty < 1)

J
( Z(th+1/\T1\/[ - Xt]'/\Tjw)z - <Xt/\TM>‘ > €7t S TM) + IP)(TM < t)
J

Z(thJrl/\Tl\/I - th/\TM)2 - <Xt/\TM>
J

I
~
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~
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> e) L P(Ty < 1),




We already established the result for bounded martingales and quadratic vari-
ations. Thus, there exists 6 = d(e) > 0 such that, provided A(II) < 4, we
have

]P)(‘ Z(th+l/\TM - th/\TM)2 - <Xt/\TM> > 6) < 6/2'
J

We conclude that for IT = {0 = tg < t1 < -+ < t,, = t} with A(II) < 6, we
have

IP(‘ D (K — K1) = <Xt>’ > e) <e

4 Additional reading materials

e Chapter I. Karatzas and Shreve [1]

References

[1] 1. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus,
Springer, 1991.



MIT OpenCourseWare
http://ocw.mit.edu

15.070J / 6.265J Advanced Stochastic Processes
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



