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1 Ito integral for simple processes. Ito isometry

Consider a Brownian motion B; adopted to some filtration F; such that ( By, F;)
is a strong Markov process. As an example we can take filtration generated
by the Brownian motion itself. Our goal is to give meaning to expressions of
the form [ X;dB; = [ X¢(w)dB(w), where X; is some stochastic process
which is adapted to the same filtration as B;. We will primarily deal with the
case X € Ly, although it is possible to extend definitions to more general pro-
cesses using the notion of local martingales. As in the case of usual integration,
the idea is to define | X;(w)dB;(w) as some kind of a limit of (random) sums
> Xt;(w)(Bt,, (w) — By, (w)) and show that the limit exists in some appropri-
ate sense. As X; we can take all kinds of processes, including B itself. For ex-
ample we will show that fOT BdB; makes sense and equals (1/2)B2 — (1/2)T.

Definition 1. A process X € Lo = Lo, F, (Ft),P) is called simple if there
exists a countable partition Il : 0 =ty < --- < t, < --- with lim, t, = o0
such that Xy(w) = Xy;(w) forall t € [tj,tj11),j = 0,1,2,... forallw € Q.
The subspace of simple processes is denoted by £3

We assume that partition is such that ¢; — oo as j — oo. It is important to
note that we assume that the partition II does not depend on w. Thus not every
piece-wise constant process is a simple process. Give an example of a piece-
wise constant process which is not simple. Note that since X; € F; we have
Xt; € Jy; for each j. As an example of simple process, fix any partition IT

and a process X; € Lo and consider the process Xt(w) defined by Xt(w) =



Xi,(w), where t; is defined by ¢ € [t;,%;,1). In the definition it is important
that X, = Xt; and not Xy, . Observe that the latter is not necessarily adopted
to (Ft)ter, -

Given a simple process X and ¢, define its integral by

L(X(w)= Y Xi,w)(Bi,,(w) = By, W) + Xy, ()(Bi(w) — By, (w)),

0<j<n—1

where n = max{j : t; < t}. Observe that [;(X) is an a.s. continuous function
(as By is a.s. continuous).

Theorem 1. The following properties hold for I;(X)

Ii(aX + BY) = ady(X) + BL(Y). )
t

E[IZ(X)] = E[ / X2ds] [Ito isometry], )
0

I;(X) € My, 3)

E[(I(X) — Is(X))?Fs) = E[/t XZdu], VO<s<t<T. 4)

Notice that (4) is a generalization of Ito isometry. We only prove Ito isome-
try, the proof of (4) follows along the same lines.

Proof. Define t,, = t for convenience. We begin with (1). Let {t}} and {t?}
be partitions corresponding to simple processes X and Y. Consider a partition
{t;} obtained as a union of these two partitions. For each ¢; which belongs to
the second partition but not the first define X;, = i where t} is the largest
point not exceeding ¢;. Do a similar thing for Y. Observe that now X; = X,
for t € [tj,tj41). The linearity of Ito integral then follows straight from the
definition.
Now for (2) we have

E[I?(X)] = Z E[thl th2 (Btj1+1 - Btjl )<Btjz+1 - Btjz )l
0<j1,j2<n—1

When j; < jo we have
E[Xth thz (Btj1+1 o Btj1)(Btj2+1 o Btﬂé )] =0

which we obtain by conditioning on F, , using the tower property and observ-
ing that all of the random variables involved except for By, ,, are measurable
with respect to ‘thz (recall that F; i C Fi io ).
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Now when j; = jo = 7 we have
E[th] (Btj+1 - Btj)z] = E[ijE[(Btj+1 - Btj)2‘]:tjﬂ
= E[X] (tj+1 — t;))-
Combining, we obtain
ZIE (L1 — )] =B X7 (tj11 — 1)) / X2ds).
J

Let us show (3). We already know that the process I;(X) is continuous. From
Tto isometry it follows that E[I?(X)] < oo. It remains to show that it is a
martingale. Thus fix s < ¢. Define t,, = ¢ and define jo = max{j : t; < s}.

E[It Z Xt] BtJ.H Btj)‘fs]

1<n—1
[ Z th (Btj+1 - Btj)‘]:s] + E[tho (BS - Btj0)|‘F5]
J<jo—1

+E[Xy,, (Bt o1 — B)|F] +E[Y | Xy, (By,,, — By Fe]

J>Jjo

=E[ Y Xy(Bi,, — By))|Fs] + E[Xy, (Bs — By, )| Fi]
J<jo—1

= I,(X).

(think about justifying last two equalities).

2 Constructing Ito integral for general square integrable processes

The idea for defining Ito integral | XdB for general processes in Lo is to ap-
proximate X by simple processes X (") and define [ XdBasalimitof [ X ("dB,
which we have already defined.

For this purpose we need to show that we can indeed approximate X with
simple processes appropriately. We do this in 3 steps.

Step 1.

Proposition 1. Suppose X € Lo is an a.s. bounded continuous process in the
sense AM s.t. P(w : sup;>q | X¢(w)| < M) = 1. Then for every T > 0 there



exists a sequence of simple processes X™ € L such that

n

T
limE[/ (X7 — Xy)%dt] = 0. 6))
0

Proof. Fix asequence of partitions I, = {7} of [0, 7] such that A,, = max(t7, ;-
t?) — 0 asn — oo. Given process X, consider the modified process X" = Xt;_z
forall ¢ € [t},¢7, ;). This process is simple and is adapted to J%. Since X is a.s.
continuous, then a.s. X;(w) = lim, . X{"(w) (notice that we are using left-
continuity part of continuity). We conclude that a sequence of measurable func-
tions X" : Q x [0,7] — R a.s. converges to X :  x [0,7] — R. On the other
hand P(w : sup;<p | X} (w)| < M) = 1. Using Bounded Convergence Theo-

rem, the a.s. convergence extends to integrals: E[ fOT(Xg1 — Xy)%dt] - 0. O

Step 2.

Proposition 2. Suppose X € Lo is a bounded, but not necessarily continuous
process: | X| < M a.s. For every T > 0, there exists a sequence of a.s. bounded
continuous processes X, such that

T
limE[/ (X7 — Xy)2dt] = 0. (6)
n 0

Proof. We use a certain “regularization” trick to turn a bounded process into a
bounded continuous approximation. Let X;* = n ftil /n Xsds. Wehave | X"| <
n(l/n)M = M and |X}; — X}'| < 2n|t’ — t|M (verify this), implying that
X[ is a.s. bounded continuous. Since X; is a.s. Riemann integrable, then
for almost all w, the set of discontinuity points of of X;(w) has measure zero
and for all continuity points ¢ by Fundamental Theorem of Calculus, we have
limy, 00 X7'(w) = Xi(w). We conclude that X™ : Q x [0,7] — R converges
a.s. to X on the same domain. Applying the Bounded Convergence Theorem
we obtain the result. O

Step 3.

Proposition 3. Suppose X € Lo. For every T' > 0 there exists a sequence of
a.s. bounded processes X,, € Lo such that

n

T
limE[/ (X7 — X;)%dt] = 0. @)
0



Proof. Define X" by X/* = X; when —n < X; < n, X’ = —n, when
Xy < —mand X{* = n, when X; > n. We have X" — X a.s. w.r.t both w and
t € [0,T]. Also | X}'| < |X¢| implying

T T T
/ (X! — X;)2dt < 2/ (Xt")th—F2/ XZ2dt
0 0 0

T
<4 / XZdt.
0

Since E| fOT XZ2dt] < oo, then applying Dominated Convergence Theorem, we
obtain the result.

Exercise 1. Establish (7) by applying instead Monotone Convergence Theorem.
O

3 Additional reading materials

e Karatzas and Shreve [1].

e (Oksendal [2], Chapter III.
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