
1 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
6.265/15.070J Fall 2013 
Lecture 15 10/30/2013 

Ito integral for simple processes
 

Content. 

1. Simple processes. Ito isometry 

2. First 3 steps in constructing Ito integral for general processes 

Ito integral for simple processes. Ito isometry 

Consider a Brownian motion Bt adopted to some filtration Ft such that (Bt, Ft) 
is a strong Markov process. As an example we can take filtration generated 
by the Brownian motion itself. Our goal is to give meaning to expressions of o o 
the form XtdBt = Xt(ω)dBt(ω), where Xt is some stochastic process 
which is adapted to the same filtration as Bt. We will primarily deal with the 
case X ∈ L2, although it is possible to extend definitions to more general pro­
cesses using the notion of local martingales. As in the case of usual integration, o 
the idea is to define Xt(ω)dBt(ω) as some kind of a limit of (random) sums 

Xtj (ω)(Btj+1 (ω)−Btj (ω)) and show that the limit exists in some appropri­j 
ate sense. As Xt we can take all kinds of processes, including Bt itself. For ex-o Tample we will show that BtdBt makes sense and equals (1/2)B2 − (1/2)T .0 T 

Definition 1. A process X ∈ L2 = L2(Ω, F , (Ft), P) is called simple if there 
exists a countable partition Π : 0 = t0 < · · · < tn < · · · with limn tn = ∞ 
such that Xt(ω) = Xtj (ω) for all t ∈ [tj , tj+1), j = 0, 1, 2, . . . for all ω ∈ Ω. 
The subspace of simple processes is denoted by L0
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We assume that partition is such that tj → ∞ as j → ∞. It is important to 
note that we assume that the partition Π does not depend on ω. Thus not every 
piece-wise constant process is a simple process. Give an example of a piece-
wise constant process which is not simple. Note that since Xt ∈ Ft we have 
Xtj ∈ Ftj for each j. As an example of simple process, fix any partition Π 
and a process Xt ∈ L2 and consider the process X̂t(ω) defined by X̂t(ω) = 
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Xtj (ω), where tj is defined by t ∈ [tj , tj+1). In the definition it is important 
that X̂t = Xtj and not Xtj+1 . Observe that the latter is not necessarily adopted 
to (Ft)t∈R+ . 

Given a simple process X and t, define its integral by  
It(X(ω)) = Xtj (ω)(Btj+1 (ω) − Btj (ω)) + Xtn (ω)(Bt(ω) − Btn (ω)), 

0≤j≤n−1 

where n = max{j : tj ≤ t}. Observe that It(X) is an a.s. continuous function 
(as Bt is a.s. continuous). 

Theorem 1. The following properties hold for It(X) 

It(αX + βY ) = αIt(X) + βIt(Y ). (1)  t 
E[I2(X)] = E[ X2ds] [Ito isometry], (2)t s 

0 

It(X) ∈ M2,c, (3)  t 
E[(It(X) − Is(X))2|Fs] = E[ X2du], ∀ 0 ≤ s < t ≤ T. (4)u

s 

Notice that (4) is a generalization of Ito isometry. We only prove Ito isome­
try, the proof of (4) follows along the same lines. 

Proof. Define tn = t for convenience. We begin with (1). Let {t1} and {t2}j j 
be partitions corresponding to simple processes X and Y . Consider a partition 
{tj } obtained as a union of these two partitions. For each tj which belongs to 
the second partition but not the first define Xtj = Xt1 , where ti 

1 is the largest 
i 

point not exceeding tj . Do a similar thing for Y . Observe that now Xt = Xtj 

for t ∈ [tj , tj+1). The linearity of Ito integral then follows straight from the 
definition. 

Now for (2) we have  
E[It 2(X)] = E[Xtj1 

Xtj2 
(Btj1+1 − Btj1 

)(Btj2+1 − Btj2 
)]. 

0≤j1,j2≤n−1 

When j1 < j2 we have 

E[Xtj1 
Xtj2 

(Btj1+1 − Btj1 
)(Btj2+1 − Btj2 

)] = 0 

which we obtain by conditioning on Ftj2 
, using the tower property and observ­

ing that all of the random variables involved except for Btj2+1 are measurable 
with respect to Ftj2 

(recall that Ftj1 
⊂ Ftj2 

). 
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Now when j1 = j2 = j we have 

E[Xt
2 
j (Btj+1 − Btj )

2] = E[Xt
2 
j E[(Btj+1 − Btj )

2|Ftj ]] 

= E[Xt
2 
j (tj+1 − tj )]. 

Combining, we obtain 

t 
E[It 2(X)] = E[Xt

2 
j (tj+1 − tj )] = E[ Xt

2 
j (tj+1 − tj )] = E[ Xs 

2ds]. 
0j j 

Let us show (3). We already know that the process It(X) is continuous. From 
Ito isometry it follows that E[I2(X)] < ∞. It remains to show that it is a t 
martingale. Thus fix s < t. Define tn = t and define j0 = max{j : tj ≤ s}. 

E[It(X)|Fs] = E[ Xtj (Btj+1 − Btj )|Fs]  
j≤n−1  

= E[ Xtj (Btj+1 − Btj )|Fs] + E[Xtj0 
(Bs − Btj0 

)|Fs] 
j≤j0−1 

+ E[Xtj0 
(Btj0+1 − Bs)|Fs] + E[ Xtj (Btj+1 − Btj )|Fs] 

j>j0 

= E[ Xtj (Btj+1 − Btj )|Fs] + E[Xtj0 
(Bs − Btj0 

)|Fs] 
j≤j0−1 

= Is(X). 

(think about justifying last two equalities). 

Constructing Ito integral for general square integrable processes o 
The idea for defining Ito integral XdB for general processes in L2 is to ap­o o 
proximate X by simple processes X(n) and define XdB as a limit of X(n)dB, 
which we have already defined. 

For this purpose we need to show that we can indeed approximate X with 
simple processes appropriately. We do this in 3 steps. 

Step 1. 

Proposition 1. Suppose X ∈ L2 is an a.s. bounded continuous process in the 
sense ∃M s.t. P(ω : supt≥0 |Xt(ω)| ≤ M) = 1. Then for every T > 0 there 
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exists a sequence of simple processes Xn ∈ L0 such that 2 

T 
lim E[ (Xn − Xt)

2dt] = 0. (5)t n 0 

Proof. Fix a sequence of partitions Πn = {tn} of [0, T ] such that Δn = max(tn −j j+1

tnj ) → 0 as n → ∞. Given process X , consider the modified process Xn = Xtnt j 

for all t ∈ [tnj , tnj+1). This process is simple and is adapted to Ft. Since X is a.s. 
continuous, then a.s. Xt(ω) = limn→∞ X

n(ω) (notice that we are using left-t 
continuity part of continuity). We conclude that a sequence of measurable func­
tions Xn : Ω × [0, T ] → R a.s. converges to X : Ω × [0, T ] → R. On the other 
hand P(ω : supt≤T |Xt

n(ω)| ≤ M) = 1. Using Bounded Convergence Theo­
rem, the a.s. convergence extends to integrals: E[ 

o T 
(Xn − Xt)

2dt] → 0.t0 

Step 2. 

Proposition 2. Suppose X ∈ L2 is a bounded, but not necessarily continuous 
process: |X| ≤ M a.s. For every T > 0, there exists a sequence of a.s. bounded 
continuous processes Xn such that 

T 
lim E[ (Xn − Xt)

2dt] = 0. (6)t n 0 

Proof. We use a certain ”regularization” trick to turn a bounded process into a o tbounded continuous approximation. Let Xn = n Xsds. We have |Xn| ≤ t t−1/n 
n(1/n)M = M and |Xn

; − Xn| ≤ 2n|t' − t|M (verify this), implying that t t 
Xn is a.s. bounded continuous. Since Xt is a.s. Riemann integrable, then t 
for almost all ω, the set of discontinuity points of of Xt(ω) has measure zero 
and for all continuity points t by Fundamental Theorem of Calculus, we have 
limn→∞ X

n(ω) = Xt(ω). We conclude that Xn : Ω × [0, T ] → R converges t 
a.s. to X on the same domain. Applying the Bounded Convergence Theorem 
we obtain the result. 

Step 3. 

Proposition 3. Suppose X ∈ L2. For every T > 0 there exists a sequence of 
a.s. bounded processes Xn ∈ L2 such that 

T 
lim E[ (Xn − Xt)

2dt] = 0. (7)t n 0 
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Proof. Define Xn by Xn = when −n ≤ ≤ n, Xn = −n, when t Xt Xt t 
Xt < −n and Xn = n, when Xt > n. We have Xn → X a.s. w.r.t both ω andt 
t ∈ [0, T ]. Also |Xn| ≤ |Xt| implyingt 

Since E[ X2dt] < ∞, then applying Dominated Convergence Theorem, we 

T T T 
(Xn − Xt)

2dt ≤ 2t (Xn)2dt + 2 t Xt 
2dt 

0 0 0 
T 

≤ 4 Xt 
2dt. 

0 o T 
0 t 

obtain the result. 

Exercise 1. Establish (7) by applying instead Monotone Convergence Theorem. 

Additional reading materials 

• Karatzas and Shreve [1]. 

• Øksendal [2], Chapter III. 
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