
1 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
6.265/15.070J Fall 2013 
Lecture 16 11/04/2013 

Ito integral. Properties
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1. Definition of Ito integral 

2. Properties of Ito integral 

Ito integral. Existence 

We continue with the construction of Ito integral. Combining the results of 
Propositions 1-3 from the previous lecture we proved the following result. 

Proposition 1. Given any process X ∈ L2 there exists a sequence of simple 
processes Xn ∈ L0

2 such that  T 
lim E[ (Xn(t) − X(t))2dt] = 0. (1) 
n→∞ 0 

Now, given a process X ∈ L2, we fix any sequence of simple processes 
Xn ∈ L0 which satisfies (1) for a given T . Recall, that we already have defined 2 
Ito integral for simple processes It(Xn). 

Proposition 2. Suppose a sequence of simple processes Xn satisfies (1). There 
exists a process Zt ∈ M2,c satisfying limn E[(Zt − It(Xn))2] = 0 for all 0 ≤ 

X̂nt ≤ T . This process is unique a.s. in the following sense: if is another t 
process satisfying (1) and Ẑ is the corresponding limit, then P(Ẑt = Zt, ∀t ∈ 
[0, T ]) = 1. 

Proof. Fix T > 0. Applying linearity of It(X) and Ito isometry 

E[(IT (Xm) − IT (Xn))
2] = E[IT 

2 (Xm − Xn)]  T 
= E[ (Xm(t) − Xn(t))

2dt] 
0 T  T 

≤ 2E[ (X(t) − Xm(t))2dt] + 2E[ (X(t) − Xn(t))
2dt]. 

0 0 
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But since the sequence Xn satisfies (1), it follows that the sequence IT (X
n) is 

Cauchy in L2 sense. Recall now from Theorem 2.2. previous lecture that each 
It(X

n) is a continuous square integrable martingale: It(Xn) ∈ M2,c Applying 
Proposition 2, Lecture 1, which states that M2,c is a closed space, there exists 
a limit Zt, t ∈ [0, T ] in M2,c satisfying E[(ZT − IT (X

n))2] → 0. The same 
applies to every t ≤ T since (Zt − It(Xn))2 is a submartingale. 

It remains to show that such a process Zt is unique. If Ẑt is a limit of some 
X̂nsequence satisfying (1), then by submartingale inequality for every E > 0 

we have P(supt≤T |Zt − Ẑt| ≥ E) ≤ E[(ZT − ẐT )
2]/E2. But 

E[(ZT − ẐT )
2] ≤ 3E[(ZT − IT (X

n))2] + 3E[(IT (X
n) − IT (X̂

n))2] 

+ 3E[(IT (X̂
n) − ẐT )

2], 

and the right-hand side converges to zero. Thus E[(ZT − ẐT )
2] = 0. It follows 

that Zt = Ẑt a.s. on [0, T ]. Since T was arbitrary we obtain an a.s. unique limit 
on R+. 

Now we can formally state the definition of Ito integral. 

Definition 1 (Ito integral). Given a stochastic process Xt ∈ L2 and T > 0, its 
Ito integral It(X), t ∈ [0, T ] is defined to be the unique process Zt constructed 
in Proposition 2. 

We have defined Ito integral as a process which is defined only on a finite 
interval [0, T ]. With a little bit of extra work it can be extended to a process 
It(X) defined for all t ≥ 0, by taking T → ∞ and taking appropriate limits. 
Details can be found in [1] and are omitted, as we will deal exclusively with Ito 
integrals defined on a finite interval. 

2 Ito integral. Properties 

2.1 Simple example 

Let us compute the Ito integral for a special case Xt = Bt. We will do this di­
rectly from the definition. Later on we will develop calculus rules for computing 
the Ito integral for many interesting cases. 

We fix a sequence of partitions Πn : 0 = t0 < · · · < tn = T and consider 
Bt

n = Btj , t ∈ [tj , tj+1). Assume that limn Δ(Πn) = 0, where Δ(Πn) = 
maxj |tj+1 − tj |. We first show that this is sufficient for having 

T 
lim E[ (Bt − Bn 

t )
2dt] = 0. (2) 

n 0 
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Indeed
 
n−1T n tj+1 

(Bt − Bt
n)2dt = (Bt − Btj )

2dt. 
0 tjj=0 

We have 
tj+1 tj+1 

E[ (Bt − Btj )
2dt = E[(Bt − Btj )

2]dt 
tj tj 

tj+1 

= (t − tj )dt 
tj 

(tj+1 − tj )2 
= ,

2 
implying 

n−1 n−1T n n1
E[ (Bt − Bn)2dt] = (tj+1 − tj )2 ≤ Δ(Πn) (tj+1 − tj ) = Δ(Πn)T → 0,t 2 

j=0 j=0 

as n → ∞. Thus (2) holds. 
Thus we need to compute the L2 limit of n 

IT (Bn) = Btj − Btj )(Btj+1 

j 

as n → ∞. We use the identity 

B2 − B2 = (Btj+1 − Btj )
2 + 2Btj (Btj+1 − Btj ),tj+1 tj 

implying 
n−1 n−1 n−1n n n 

B2(T ) − B2(0) = Bt
2 
j+1 − Bt

2 
j = (Btj+1 − Btj )

2 + 2 Btj (Btj+1 − Btj ), 
j=0 j=0 j=0 

But recall the quadratic variation property of the Brownian motion: 
n−1n 

lim (Btj+1 − Btj )
2 = T 

n 
j=0 

in L2 (recall that the only requirement for this convergence was that Δ(Πn) → 
0). Therefore, also in L2 

n−1n 
Btj (Btj+1 − Btj ) → 

2

1 
B2(T ) − 

T 
2 
. 

j=0 

We conclude 
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Proposition 3. The following identity holds
 

T 
IT (B) = BtdBt =

1 
B2(T ) − 

T
. 

2 20 

Further, recall that since Bt ∈ M2,c then it admits a unique Doob-Meyer 
decomposition B2 = t + Mt, where t = (Bt) is the quadratic variation of Btt 
and Mt is a continuous martingale. Thus we recognize Mt to be 2It(B). 

2.2 Properties 

We already know that It(X) ∈ M2,c, in particular it a is continuous martin­
gale. Let us establish additional properties, some of which are generalizations 
of Theorem 2.2 from the previous lecture. 

Proposition 4. The following properties hold for It(X): 

It(αX + βY ) = αIt(X) + βIt(Y ), ∀α, β, (3) 
t 
X2E[(It(X) − Is(X))2|Fs] = E[ du|Fs], ∀ 0 ≤ s < t ≤ T. (4)u

s  TFurthermore, the quadratic variation of It(X) on [0, T ] is X2dt.t0 

Proof. The proof of (3) is straightforward and is skipped. We now prove (4). 
Fix any set A ∈ Fs. We need to show that 

t 
E[(It(X) − Is(X))2I(A)] = E[I(A) X2du].u

s 

Fix a sequence Xn ∈ L0 satisfying (1). Then 2 

E[(It(X) − Is(X))2I(A)] = E[(It(X) − It(Xn))2I(A)] + E[(It(Xn) − Is(Xn))2I(A)] 
+ E[(Is(Xn) − Is(X))2I(A)] 
+ 2E(It(X) − It(Xn))(It(X

n) − Is(Xn))I(A) 
+ 2E(It(X) − It(Xn))(Is(X

n) − Is(X))I(A) 
+ 2E(It(Xn) − Is(Xn))(Is(X

n) − Is(X))I(A) 

But E[(It(X) − It(Xn))2I(A)] → 0 since E[(It(X) − It(Xn))2] → 0 (def­
inition of Ito integral). Similarly E[(Is(X) − Is(Xn))2I(A)] → 0. Applying 
Cauchy-Schwartz inequality 

|E(It(X) − It(Xn))(It(X
n) − Is(Xn))I(A)| 

≤ (E[(It(X) − It(Xn))2])1/2(E[(It(Xn) − Is(Xn))2])1/2 → 0 
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from the definition of It(X). Similarly we show that all the other terms with 
factor 2 in front converge to zero. 

By property (2.6) Theorem 2.2 previous lecture, we have 
t 

E[(It(Xn) − Is(Xn))2I(A)] = E[I(A) (Xn)2du]u 
s 

Now 
t t t 

E[I(A) (Xn 
u )

2du] − E[I(A) X2 
udu] = E[I(A) (Xn 

u − Xu)(X
n 
u + Xu)du] 

s s s 
t 

≤ E[ 
s 
|(Xn 

u − Xu)(X
n 
u + Xu)|du] 

t t 
≤ E 

1 
2 [  (Xn 

u − Xu)
2du]E

1 
2 [  (Xn 

u + Xu)
2du] 

s s 

where Cauchy-Schwartz inequality was used in the last step. Now the first term 
in the product converges to zero by the assumption (1) and the second is uni­
formly bounded in n (exercise). The assertion then follows. 

Now we prove the last part. Applying Proposition 3 from Lecture 1, it suf­
tfices to show that I2(X) − X2ds is a martingale, since then by uniqueness t s0 

t 
X2of the Doob-Meyer decomposition we must have that (It(X)) = ds. But 0 s 

note that (4) is equivalent to 
t 

E[I2(X) − I2(X)|Fs] = E[I2(X)|Fs] − I2(X) = E[ X2du|Fs]t s t s u 
s  
t s 

= E[ X2du|Fs] − E[ X2du|Fs]u u
0 0 
t s 

= E[ X2du|Fs] − X2du.u u
0 0 

Namely, 
t s 

E[I2(X)|Fs] − E[ X2du|Fs] = I2(X) − X2du,t u s u
0 0 

tnamely, I2(X) − X2ds is indeed a martingale. t 0 s 

Additional reading materials 

• Karatzas and Shreve [1]. 

• Øksendal [2], Chapter III. 
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