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Ito integral. Properties

Content.

1. Definition of Ito integral

2. Properties of Ito integral

1 Ito integral. Existence

We continue with the construction of Ito integral. Combining the results of
Propositions 1-3 from the previous lecture we proved the following result.

Proposition 1. Given any process X € Lo there exists a sequence of simple
processes X, € L3 such that

T
nlggola[/o (X, (t) — X(t))%dt] = 0. (1)

Now, given a process X € Lo, we fix any sequence of simple processes
X™ € L9 which satisfies (1) for a given T'. Recall, that we already have defined
Ito integral for simple processes I;(X™).

Proposition 2. Suppose a sequence of simple processes X" satisfies (1). There
exists a process Zy € My . satisfying lim, E[(Z; — I;(X™))?] = 0 for all 0 <
t < T. This process is unique a.s. in the following sense: if X{L is another
process satisfying (1) and Z is the corresponding limit, then P(Zt = Zy,Vt €
[0,7]) = 1.

Proof. Fix T > 0. Applying linearity of I;(X) and Ito isometry
E[(IT(Xm) — I7(Xn))?] = E[IF(Xm — Xn)]

T
—E| /0 (Xon(t) — X (1))

T T
< 2E[ | (X(0) = X ()] + 28| (X(0) = X, (1) P
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But since the sequence X, satisfies (1), it follows that the sequence I7(X™) is
Cauchy in L9 sense. Recall now from Theorem 2.2. previous lecture that each
I;(X™) is a continuous square integrable martingale: I;(X") € M . Applying
Proposition 2, Lecture 1, which states that M» . is a closed space, there exists
alimit Z;,t € [0,T] in My, satistying E[(Z7 — I7(X™))?] — 0. The same
applies to every t < T since (Z; — I;(X™))? is a submartingale.

It remains to show that such a process Z; is unique. If Zy is a limit of some
sequence Xn satisfying (1), then by submartingale inequality for every ¢ > 0
we have P(sup;<p | Z; — Zi| > €) < E[(Zr — Zr)?] /€. But

E((Zr — Zr)?] < 3E[(Zr — Ir(X™))?] + 3E[(Ir(X™) — Ip(X™))?]
+ 3E[(Ip(X™) — Z7)?),

and the right-hand side converges to zero. Thus E[(Zr — Z7)?] = 0. It follows
that Z; = Z; a.s. on [0, T']. Since T" was arbitrary we obtain an a.s. unique limit
onR,. O

Now we can formally state the definition of Ito integral.

Definition 1 (Ito integral). Given a stochastic process X € Lo and T > 0, its
Ito integral 1,(X),t € [0,T) is defined to be the unique process Z; constructed
in Proposition 2.

We have defined Ito integral as a process which is defined only on a finite
interval [0,7]. With a little bit of extra work it can be extended to a process
I;(X) defined for all ¢ > 0, by taking 7" — oo and taking appropriate limits.
Details can be found in [1] and are omitted, as we will deal exclusively with Ito
integrals defined on a finite interval.

2 Ito integral. Properties

2.1 Simple example

Let us compute the Ito integral for a special case X; = B;. We will do this di-
rectly from the definition. Later on we will develop calculus rules for computing
the Ito integral for many interesting cases.

We fix a sequence of partitions II,, : 0 = ¢ < --- < ¢, = T and consider
Bf = By;,t € [tj,tjy1). Assume that lim, A(Il,) = 0, where A(Il,,) =
max; |tj41 — t;|. We first show that this is sufficient for having

n

T
limIE[/ (B; — B")%dt] = 0. )
0



Indeed

g 2 = [ 2
/(&—BﬁW:E:Z (By — By,)*dt.
§=0""%

0
We have
ti+1 9 tjt1 9
m/ @F&Jﬁ:/ E[(B, — By, )%t
i tj
ti+1
= / (t—t;)dt
tj
_ (i —ty)?
2 )
implying
T 1 n—1 n—1
B[ (B B = 5 3 (1~ 1)* < ALY Y (t1 — 1)) = AT = 0
0 ,
j=0 7=0

as n — oo. Thus (2) holds.
Thus we need to compute the Lo limit of

Bn) = ZBtj (Bi; 1, — By)
J

as n — oo. We use the identity

B}, — B = (Bi,,, — Bi;,)* + 2B, (By,,, — By,),
implying
n—1 n—1
BX(T) Z B, =B} =Y (By,, —By)*+2> By (B, — By),
j=0 J=0

But recall the quadratlc variation property of the Brownian motion:

li;[Ln Z(Btj+1 - Btj)z =T

in Ly (recall that the only requirement for this convergence was that A(II,,) —
0). Therefore, also in Ly

n—1 T
> By,(By,,, - By,) = 5 Iprr) - 5
7=0

We conclude



Proposition 3. The following identity holds

r 1, T
Ir(B) = | BB = 5 BXT) - 5.
0

Further, recall that since B; € M> . then it admits a unique Doob-Meyer
decomposition B? = t + M, where t = (B;) is the quadratic variation of B;
and M, is a continuous martingale. Thus we recognize M, to be 21;(B).

2.2 Properties

We already know that I;(X) € My, in particular it a is continuous martin-
gale. Let us establish additional properties, some of which are generalizations
of Theorem 2.2 from the previous lecture.

Proposition 4. The following properties hold for I;(X):
It(aX + BY) = alt( )+Blt( )a Va 57 (3)

E[(I;(X) — I,(X))?F] = / X2du|F,],V0<s<t<T. @

Furthermore, the quadratic variation of I;(X) on [0,T) is fo XZdt.

Proof. The proof of (3) is straightforward and is skipped. We now prove (4).
Fix any set A € F5. We need to show that

(4)) = El1(4) [ X2du],

Fix a sequence X" € L satisfying (1). Then

E[(1¢(X) — I,(X))?

~

E[(1:(X) — I(X))*I(A )] E[(1:(X) = L(X™))*I(A)] + E[(I(X") = I,(X"))*1(A)]
E[(1s(X™) — (X )]

+ 2[E(It(X)

+ 2E(L(X) — It( X"

+ 2E(I(X™) — Is(X™)) (Is(X™) — Ls(X))I(A)
But E[(I;(X) — I;(X™))2I(A)] — 0 since E[(I;(X) — I;(X™))?] — 0 (def-
inition of Tto integral). Similarly E[(Is(X) — Is(X™))2I(A)] — 0. Applying
Cauchy-Schwartz inequality
[E(1:(X) — (X)) (T(X™) — Is(X™))I(A)]|

< (E[(1(X) = L(X™)*DPEL(X") = (X)) /2 = 0
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from the definition of I;(X). Similarly we show that all the other terms with
factor 2 in front converge to zero.
By property (2.6) Theorem 2.2 previous lecture, we have

B0 ~ LOC) ()] = B (4) [ (epa

Now
E[I(A)/ (X™)2du) — / X2du) = E[I(A) /t(ij — Xo)(XJ + Xy)du]

E| / (X7 — X,)(XT + X,,)[du]

< E%[/t(X{f — X,)%du]E? [/t(xzj + X,)%du

where Cauchy-Schwartz inequality was used in the last step. Now the first term
in the product converges to zero by the assumption (1) and the second is uni-
formly bounded in n (exercise). The assertion then follows.

Now we prove the last part. Applying Proposition 3 from Lecture 1, it suf-
fices to show that I?(X) — f(f X2ds is a martingale, since then by uniqueness

of the Doob-Meyer decomposition we must have that (I;(X)) = f(f X2ds. But
note that (4) is equivalent to

E[f(X) — I2(X)|F] = E[F(X)|F] - I2(X) = E[/t Xodu|Fy]

/X2du|f /X dul|Fs]
:E[/ ngu|fs]—/ X2du.
0 0

E[I2(X)|Fs] — /X2du|f | =T1%(X /XQdu

namely, I7(X) — f(f X2ds is indeed a martingale. O

Namely,

3 Additional reading materials

e Karatzas and Shreve [1].

e (Jksendal [2], Chapter III.
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