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1 Ito process 

Observe that trivially
 t 
0 dBs = Bt. In the previous lecture we computed 

It(B) =
 t 

0 
BsdBs = 

1 
2 
B2 

t − 
t 
2
, 

or  t 
B2(t) = 2 B(s)dB(s) + t, (1) 

0  tObserve also that we cannot have t = dBs for some process X ∈ L2 as0 Xs

Ito integral is a martingale, but t is not. Thus we see that applying a functional 
operation to a process which is an Ito integral we do not necessarily get another 
Ito integral. But there is a natural generalization of Ito integral to a broader 
family, which makes taking functional operations closed within the family. 

Definition 1. An Ito process or stochastic integral is a stochastic process on 
(Ω, F , P) adopted to Ft which can be written in the form  t  t 

Xt = X0 + Usds + VsdBs, (2) 
0 0 

where U, V ∈ L2. As a shorthand notation, we will write (2) as 

dXt = Utdt + VtdBt. 
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t tThus B2 is an Ito process: B2 = ds + 2 BsdBs or d(B2) = dt +t t 0 0 t 
2BtdBt. Note the difference from the usual differentiation: dx2 = 2xdx. The 
additional term dt arises because Brownian motion B is not differentiable and 
instead has quadratic variation. 

Notation Given an Ito process dXt = Utdt+VtdBt, let us introduce the notation 
(dXt)

2 which stands for V 2dt. Equivalently (dXt)
2 is (dXt) · (dXt) which is t 

computed using the rules dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt. 

Ito formula 

We now introduce the most important formula of Ito calculus: 

Theorem 1 (Ito formula). Let Xt be an Ito process dXt = Utdt + VtdBt. Sup­
pose g(x) ∈ C2(R) is a twice continuously differentiable function (in particular 
all second partial derivatives are continuous functions). Suppose g(Xt) ∈ L2. 
Then Yt = g(Xt) is again an Ito process and 

∂g 1 ∂2g
dYt = (Xt)dXt + (Xt)(dXt)

2 
∂x 2 ∂x2 

Using the notational convention for dXt = Utdt + VtdBt and (dXt)
2, we can 

rewrite the Ito formula as � ∂g 1 ∂2g ∂g 
dYt = (Xt)Ut + (Xt)V 2 dt + (Xt)VtdBt.t∂x 2 ∂x2 ∂x

Thus, we see that the space of Ito processes is closed under twice-continuously 
differentiable transformations. 

Proof sketch of Theorem 1. We will do this for a very special case. We assume 
that the derivatives ∂g ∂2g as well as U and V are all bounded simple processes. ∂x ∂x2 

The general case is then obtained by approximating U and V by bounded 
simple processes in a way similar to how we defined the Ito integral. 

Let Πn : 0 = t0 < t1 < · · · < tn = t be a sequence of partitions such 
that Δ(Πn) → 0. We use the notation ΔB(tj ) = B(tj+1) − B(tj ), ΔX(tj ) = 
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X(tj+1) − X(tj ). Using Taylor expansion of g we obtain  
g(X(t)) = g(X(0)) + g(X(tj+1)) − g(X(tj )) 

j<n  ∂g 
= g(X(0)) + (X(tj ))ΔX(tj )

∂x
j<n  ∂2  1 g

+ (X(tj ))Δ
2X(tj) + o(Δ2X(tj )). 

2 ∂x2 
j<n j<n 

Now, we have 

ΔX(tj ) = X(tj+1) − X(tj ) = U(tj )(tj+1 − tj ) + V (tj )(B(tj+1) − B(tj ))). 

Thus, we obtain  ∂g ∂g 
(X(tj ))ΔX(tj ) = (X(tj)) U(tj )(tj+1 − tj ) + V (tj )(B(tj+1) − B(tj ))

∂x ∂x
j<n j<n 

We argue that in L2 the convergence

 t∂g ∂g 
(X(tj )) U(tj )(tj+1 − tj ) → (X(s))U(s)ds 

∂x ∂x0j<n 

and t∂g ∂g 
(X(tj)) V (tj )(B(tj+1) − B(tj )) → (X(s))V (s)dB(s)

∂x ∂x0j<n 

takes place. For the first convergence, let us fix any sample ω. Then this conver­
gence follows straight from the definition of Riemann integral since Δ(Πn) → 
0. Thus we have a.s. convergence. Since by our assumptions the integrated 
variables are bounded then Bounded Convergence Theorem (applied to uniform 
on [0, t] distribution, just as in Proposition 1 Lecture 12) implies convergence 
in L2. To prove the second convergence consider a simple process g̃ which is 
defined to be ∂g (X(tj )) for all t ∈ [tj , tj+1). Then the left-hand side is Ito ∂x 
integral of g̃(s)V (s). Then, by definition of Ito integral, the convergence to the 
right-hand side holds if the following convergence takes place 

t ∂g 
lim E[ (g̃(s)V (s) − (X(s))V (s))2ds = 0. 
n ∂x0 
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It is a simple exercise in analysis to show this and we skip the details.  ∂2gNow consider j<n ∂x2 (X(tj ))Δ
2X(tj ) and identify its L2 limit. We have 

∂2g 
(X(tj ))Δ

2X(tj ) = 
∂2g 

(X(tj ))U
2(tj )(tj+1 − tj )2 

∂x2 ∂x2 
j<n j<n 

∂2g
+ 2 (X(tj ))U(tj )V (tj )(tj+1 − tj )ΔB(tj )

∂x2 
j<n 

∂2g
+ (X(tj ))V 2(tj )Δ2B(tj ). 

∂x2 
j<n 

gWe now analyze these terms when Δ(Πn) → 0. Recall our assumption that ∂
2

∂x2 

and U are bounded. Say it is at most C > 0. Therefore the first sum converges 
to zero provided Δ(Πn) → 0. To analyze the second sum, we square it and take 
expected value: 

2∂2g
E[2 (X(tj ))U(tj )V (tj )(tj+1 − tj )ΔB(tj ) ]

∂x2 
j<n 

∂2g 2 
= 4 E[ (X(tj ))U(tj )V (tj ) ](tj+1 − tj )3 ,

∂x2 
j<n 

where to obtain this equality we first condition on field Ftj , note that the ex­
pected value of all cross products vanishes and use E[Δ2B(tj )|Ftj ] = tj+1 −tj . 
Again, since the second partial derivative and U, V are bounded, then the entire 
term converges to zero provided that Δ(Πn) → 0. In order to analyze the last 
sum the following result is needed. 

Problem 1 (Generalized Quadratic Variation). Suppose a(s) ∈ H2 and Πn : 
0 = t0 < · · · < tn = t is a sequence of partitions satisfying Δ(Πn) → 0 as 
n → ∞. Then the following convergence occurs in L2: 

t 
lim a(tj )(B(tj+1) − B(tj ))

2 = a(s)ds. 
n 0j 

HINT: use the same approach that we did in establishing the quadratic variation 
of B. 

Using this result we establish that the last sum converges in L2 to 
t ∂2g 

(X(s))V 2(s)ds. 
0 ∂x

2 
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It remains to analyze j o(Δ
2X(tj )) and using similar techniques, it can be 

shown that this term vanishes in L2 norm as Δ(Πn) → 0. Putting all of this 
together, we conclude that g(X(t)) is approximated in L2 sense by 

t t∂g 1 ∂2g 
g(X(0)) + (X(s))dX(s) + (X(s))V 2(s)ds. 

0 ∂x 2 0 ∂x
2 

But recall that V 2(s)ds = (dX(s))2. Making this substitution, we complete the 
derivation of the Ito formula. 

Let us apply Theorem 1 to several examples. 

Exercise 1. Verify that in all of the examples below the underlying processes 
are in L2. 

Example 1. Let us re-derive our formula (1) using Ito formula. Since Bt = 
t 1dBs is an Ito process and g(x) = x2 is twice continuously differentiable, 0 2 

then by the Ito formula we have 

1 ∂g 1 ∂2g
d( B2) = dg(Bt) = dBt + (dBt)

2 
t2 ∂x 2 ∂x2 

= BtdBt + 
1
(dBt)

2 
2
dt 

= BtdBt + ,
2 

which matches (1). 

Example 2. Let us apply Ito formula to B4. We obtain t 

d(B4) = 4B3dBt + 
1
12B2dt = 4B3dBt + 6B2dt,t t t t t2 

namely, written in an integral form 

t t 
B4 = 4 B3dBs + 6 B2ds.t s s 

0 0 

Taking expectations of both sides and recalling that Ito integral is a martingale, 
we obtain 

t 1
E[ B2ds] = E[B4]s 6 t 

0 
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which we find to be (1/6)3t2 as the 4-th moment of a normal zero mean dis-
tribution with ask
compute

∫ std σ is 3σ4. Recall an earlier exercise where you were ed to
E t

[ B2
0 sds] directly. We see that Ito calculus is useful even in comput-

ing conventional integrals.

3 Multidimensional Ito formula

There is a very useful analogue of Ito formula in many dimensions. We state
this result without proof. Before turning to the formula we need to extend our
discussion to the case of Ito processes with respect to many dimensions, as so
far we have we have considered Ito integrals and Ito processes with respect to
just one Brownian motion. Thus suppose we have a vector of d independent
Brownian motions Bt = (Bi,t, 1 ≤ i ≤ d, t ∈ R+). A stochastic process
Xt is defined to be an Ito process with respect to B∑t if there exists Ut ∈ L2
and Vi,t ∈ L2, 1 ≤ i ≤ d such that Xt = Utdt + i Vi,tdBi,t, in the sense
explained above. The definition naturally extends to the case whenXt is a vector
of processes.

Theorem 2. Suppose dXt = Utdt + VtdBt, where vector U = (U1, . . . , Ud)
and matrix V = (V11, . . . , Vdd) have L2 components and B is the vector of d
independent Brownian motions. Let g(x) be twice continuously differentiable
function from Rd into R. Then Yt = g(Xt) is also an Ito process and

d

dYt =
∑ ∂g

i=1
∂xi

(Xt)dXi,t +
1

2

d∑
i,j=1

∂2g
(Xt)dXi,t

∂xixj
· dXj,t,

where dXi,t · dXj,t is computed using the rules dtdt = dtdBi = dBidt =
0, dBidBj = 0 for all i 6= j and (dBi)

2 = dt.

Let us now do a quick example illustrating the use of the Ito formula. Con-
sider g(t, B ) = etBt

t . We will use Ito formula to find its derivative. Since both
t and Bt are Ito processes and g(t, x) = etx is twice continuously differentiable
function g : R2 → R, the formula applies. ∂

∂t ∂t2 ∂x

tetx, ∂2

∂x2 g = t2etx. Then we can find its Ito representation using the Ito formula
as

d(etBt) = etBt
1 1

Btdt+ etBtB2
t (dt)2 + tetBtdBt + t2etBt(dB 2

t)
2 2

= etBt
1

(Bt + t2)dt+ tetBtdBt.
2

g = xetx, ∂2
g = x2etx, ∂ g =
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Problem 2. Use the Ito formula to find eBt dBt. In other words, you need to 
represent this integral in terms of expressions not involving dBt (as we did for 
BtdBt). 

Suppose f is a continuously differentiable function. Let us use Ito formula to 
tfind fsdBs and derive the integration by parts formula. In other words we 0 

look at a special simple case when X is a deterministic process i.e., Xs = fs 
a.s. First we observe that f ∈ L2. Indeed, it is differentiable and therefore 
continuous. This implies that f is bounded on any finite interval and therefore 

t tE[ f2ds] = f2ds < ∞.0 s 0 s 
df ∂g g d2fIntroduce g(t, x) = ftx. We find that ∂g = x = ft, ∂

2

= x and∂t dt , ∂x ∂t2 dt2 

second order partial derivatives with respect to x disappear. Therefore, using Ito 
formula, we obtain 

df d2f df 
d(g(t, Bt) = Btdt + Bt(dt)

2 + ftdBt + 0 = Btdt + ftdBt
dt dt2 dt 

This implies (since g(0, B(0)) = 0) 

t t df 
fsdBs = ftBt − Bs ds. 

ds0 0 

This does look like integration by parts. 

It turns out that a more general version of the integration by parts formula holds 
in Ito calculus. We start by recalling the definition of Stieltjes integral. We are 
given a function g which has bounded variation and another function f , which 

twe assume for simplicity is continuous. We define the Stieltjes integral fsdgs0 
as an appropriate limit of the sums j ftj (gtj+1 − gtj ) where Πn : 0 = t0 < 
· · · < tn = t is a sequence of partitions with Δ(Πn) = maxj (tj+1 − tj ) → 0. 
We skip the formalities of the construction of such a limit. They are similar to 
(and simpler than) those of the Ito integral. 

Now let us state without proving the integration by parts theorem. 

Theorem 3. Suppose fs is a continuous function on [0, t] with bounded varia­
tion. Then 

t t 
fsdBs = ftBt − Bsdfs, 

0 0 

where the second integral is the Stieltjes integral. 
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Is there a generalization of integration by parts when f is not necessarily 
deterministic? The answer is positive, but, unfortunately, it does not reduce an 
Ito process to a process not involving Brownian component dB. 

Theorem 4. Let Xt, Yt be Ito processes. Then XtYt is also an Ito process: 

t t t 
XtYt = X(0)Y (0) + XsdYs + YsdXs + dXsdYs 

0 0 0 

Proof. The proof is direct application of multidimensional Ito formula to the 
function g(Xt, Yt) = XtYt. 

Additional reading materials 

• Øksendal [1], Chapter IV. 
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