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1 Security price processes, trading strategies and arbitrage 

As early as 1900, Louis Bachelier had proposed using Brownian motion as a 
model for security prices. As insightful as it was, this model is somewhat re­
strictive. For example it allows stock price to be negative. 

A more appropriate and accepted model is to assume that stock prices follow 
a general Ito process Xt = X

e t e t
0 + µsds + σ dB s s0 0 , where µ, σ are adapted 

processes. Suppose we make several investment decisions with this stock. In 
particular at times t1 < t2 < · · · < tk we decide to hold θtk stocks of this 
security. What  would be our gain/loss at some later time t = tk+1 > tk? It 
is simply j θ (X  X ). It makes sense to assume that our trading ≤k tj tj+1 − tj 

strategy θ is an adapted process (including the possibility that θ is deterministic), 
since otherwise it means we can predict the market. Thus we can think of θ as 
a simple adapted process. The simplicity means that we make only k trading 
decisions. But there is no reason to bound the number of trading decisions a 
priori (unless we take trading fees into account). So we may think of θ as an 
arbitrary adapted process θt ∈ Ft. For technical reasons we do assume that 
θ ∈ L2. This is needed so that we exclude the ”doubling” strategy pathology 
which as know may bring a positive gain with probability one. 

Definition 1. A trading strategy θt is an adapted process in L2. The gain pro­
duced by the trading strategy θt during the time interval [0, T ] is defined to be T  T  T 

θtdXt £ θtµtdt + θtσtdBt (1) 
0 0 0 
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Given a vector of securities X̄t = (X1
t , . . . , X

m
t ) a vector of trading strategies 

¯ m ¯θt = (θ1t , . . . , θt ) into securities Xt is defined to be self-financing if for every 
time instance t 

t 
θ̄t · ¯ ¯ ¯

 ∫
¯ ¯Xt = θ0 · X0 + θ(s) · dX(s) (2)  0 

j j = θ0X0 + 
1≤j≤m 1≤

 
j≤m 

 ∫ t 
θj (s)dXj (s). (3)

0

This definition simply means that whatever we have at any time we invest. 
This is easier to understand when we have a simple strategy, that is θ ∈ L0

2. 
Then we trade at times 0 = t0 < t1 < · · · < tn = t. We start with portfolio 
θ̄0 buy θ̄0 · X̄0 worth of dollars of a security. At time t1 our portfolio is worth 
¯ ¯ ¯ ¯ ¯ ¯θ0 · X0 + θ0 · (Xt1 − X0) £ Wt1 . We create some other portfolio θt1 with the 
condition that ¯ ¯θt1 · Xt1 = Wt1 (self-financing). At time t2 our portfolio is worth 

¯ ¯Wt1 + ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯θt1 · (Xt2 − Xt1 ) = θ0 · X0 + θ0 · (Xt1 − X0) + θt1 · (Xt2 − Xt1 ) 

£ Wt2 . 

Then we create portfolio θ̄t2 with the condition ¯ ¯θt2 · Xt2 = Wt2 , and so on. In 
the end we obtain 

¯ · ¯   ¯ · ¯ ¯ ¯θt Xt = Wt = θ0 X0 +
 

θtj · (Xtj+1 − Xtj ) 
j≤n−1 

t 
¯ ¯= θ0 · X0 + 

 ∫
¯ ¯θ(s)dX(s). 

0 

We do not require that θ ≥ 0. Having a negative θ < 0 means essentially 
short-selling the security. 

One of the basic assumptions of classical financial models is that the security 
market does not allow arbitrage. Arbitrage is an opportunity of obtaining a 
positive gain without any risk over some time period [0, T ]. Mathematically, we 
define it as follows. 

Definition 2. A vector of trading strategies ¯ ¯θt in securities Xt is defined to be 
arbitrage if ¯ ¯θ0 · X0 < 0 and ¯ ¯ ¯ ¯ ¯ ¯θT · XT ≥ 0 a.s., or θ0 · X0 ≤ 0 and θT · XT > 0 
(where we say Z > 0 means Z ≥ 0 and P(Z > 0) > 0). 

We see that in either case an arbitrage creates an opportunity to gain money 
without any losses. In the first case first case we gain −θ0X0 with probability 
one. In the second case we gain θT XT with a positive probability. It is a basic 
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assumption in finance theory that market prices are such that there does not 
exist a trading strategy creating an arbitrage opportunity. As it turns out, under 
technical assumptions, this is equivalent to existence of a change of measure 
such that with respect to the new measure X is a martingale. 

2 Black-Scholes option pricing formula 

For the purposes of this section we assume that we are dealing with two securi­
ties: 

1. A stock, whose time t price St follows a geometric Brownian motion 

St = x exp(αt + σBt) 

for some constants α, σ; and 

2. A bond, whose time t price βt at time t is given as 

βt = β0 exp(rt) 

for some constants β0, r. 

Both of these are Ito processes. The stock process we find using Ito formula 
is 

1 
dS  = S(αdt + σdB) + Sσ2(dB)2 = S(µdt + σdB), (4)

2 

where µ = α + σ2 
. The β2  process is simply a deterministic process satisfying 

dβ = βrdt. µ is called the instantaneous rate of return, σ is called the volatility 
and r is called the risk free interest rate. 

In addition suppose we have the following derivative security called op­
tion. Specifically, we will consider a so called European call option which is 
parametrized by a certain strike price K and maturity time T . A European call 
option gives its owner the right to buy the stock S at time T for a price K. Thus 
the payoff to the owner of the option is max(ST − K, 0) at time T (the option 
will not be exercised when the price ST < K to avoid a loss). The main ques­
tion is what should be the price of this stock at time 0? One would expect the 
fair price of the option to depend on the owner’s/seller’s perception of the risk 
of the stock. The main insight of the Black Scholes was to realize that the price 
of the option is tied to the price of the stock in a deterministic way if there is to 
be no arbitrage. 
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The reason for this deterministic dependence has to do with the fact that one 
can simply ”replicate” the option by carefully constructing a portfolio consisting 
of a bond and a stock. Another surprising aspect of the Black Scholes result was 
that the portfolio and the price can be computed in a very explicit form. 

We first present the Black Scholes formula and then discuss its relevance to 
option pricing. 

The Black-Scholes Formula We are given a strike price K, time instance T , 
interest rate r and volatility σ. Define 

log x + (rK  +  σ2
)(T  t) 

z = 
σ
√ 2 −
T − t 

and 

r(T t)
√ 

  C(x, t) = xN(z) − e − − KN(z − σ T − t). (5) 

We now state the Black Scholes theorem. 

Theorem 1 (Black Scholes option pricing theorem). If there is no arbitrage 
then the price of an option with strike K and maturity time T must be equal to 
C(S0, 0). In general, the price of this option at time t must be C(St, t). 

Thus, as the theorem claims, the current price of the option is uniquely de­
termined by the current price of the stock and the market parameters. Notice that 
while the price does depend on the volatility σ of the price process, it does not 
depend on µ = α +σ2/2, the instantaneous rate of return. This might seem very 
surprising as presumably an option corresponding to a stock which has a higher 
rate of return should have higher price. The explanation is that the absence of 
arbitrage prevents two stocks with the same volatility from having different rates 
of return. To see this observe the following simple fact. 

Lemma 1. Suppose σ = 0 i.e., the stock is riskless. Then no arbitrage implies 
µ = r. 

This lemma is pretty much self-evident. If µ = α > r we can make money 
by investing in the stock and shortselling the same amount of bonds. Say we buy 
one dollar worth of stock and sell one dollar worth of bonds. Then at time zero 
our net investment is zero but at time t the worth of our portfolio is eαt −ert > 0. 
Similarly, when α < r we can buy bonds and sell stock. Thus it must be (as is 
obvious) that α = r. That is no arbitrage places a constraint on the combinations 
of the mean rate of return µ and the volatility σ. 
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Before we discuss how to establish the Black-Scholes formula (we will only 
sketch the proof) let us discuss its behavior in various ”extreme” cases. Say 
again σ = 0. In this case it must be that α = r. What is the worth of the option 
at time t = 0? Suppose the price of the stock at time zero is x. At time T 
option pays with probability one an amount rT xe − K. If rT x ≥ K then its 
worth at time t = 0 is exactly  x − e−rTK as we can create a net xerT − K by 
investing x − e−rT K into stock or bonds (which are equivalent since α = r). 
Therefore the right price of this option at time zero is exactly x − e−rT K. But 
if rT  or  − −rT xe < K x Ke < 0 then with probability one option does not pay 
anything. Therefore it is worth zero. 

Let us see whether this matches what the Black-Scholes formula predicts. 
We first compute z as σ → 0. In this case the limit of z is 

log(x/K) + (r + σ2/2)T 
lim √ = ∞ 
σ→0 σ T 

when log(x/K) + rT > 0 and 

log(x/K) + (r + σ2/2)T 
lim √ =  
σ→0 σ T 

−∞

when log(x/K) + rT < 0. The degenerate case log(x/K) + rT = 0 is sort 
of a tie breaking case and we do not interpret it. The two conditions are exactly 
x − e−rT K > 0 or < 0. In the first case the Black-Scholes formula gives 

C(x, 0) =  xN(∞) − e− rTKN(∞) = x − e− rtK. 

In the second case it gives 

C(x,  0) = xN(−∞) − e− rTKN(−∞) = 0. 

This is consistent with our findings. 
Let us now look at a different approximation as t → T , but we no longer 

assume σ = 0. In this case we have the limit 

log(x/K) + (r + σ2/2)(T  t)
lim 

σ
√ −

= 
 

∞ 
t→T  T − t 

√ 
when x > K and is −∞ when x < K. Also z − σ T − t approaches ∞ when 
x > K and −∞ when x < K. This means that 

lim C(x, t) = xN( )  KN( ) = x  K 
t→T 

∞ − ∞ −
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when x > K and = 0 when x < K. This is again consistent with common 
sense. As the strike time T approaches, the uncertainty about the stock gradually 
disappears and its worth is x − K when x > K and 0 when x < K, namely it 
is worth exactly max(x − K, 0) - which is its payoff upon maturity. 

Proof sketch for the Black-Scholes Theorem. We will show that there exists a 
self-financed trading strategy at, bt for trading stocks St and bonds βt such that 
aT ST + bT βT = max(ST − K, 0), that is the value of the portfolio at time T 
is exactly the payoff max(ST − K, 0) of the option at time T . Since there is no 
arbitrage then the price of the option at time t = 0 must be exactly a0S0 + b0β0. 

We will first assume that the right price C(St, t) of the option at time t is 
”nice”. Specifically the corresponding function C(x, t) is twice continuously 
differentiable. Later on when we actually find C we simply verify that this is 
indeed the case. For now, we make this assumption and let us try to infer the 
function C as well as self-financed strategies a and b. We want to find a self-
financed trading strategy a, b such that 

atSt + btβt = C(St, t). (6) 

How can we find it? We will find an Ito representation of atSt + btβt and match 
it with Ito representation of C. 

Using the Ito formula we know that C(St, t) is again an Ito process and 
using (4) 

∂C ∂C 1 ∂2C 
dC =  dt + dS + (dS)2

∂t ∂x 2 ∂x2  ∂C ∂C 1 ∂2C ∂C 
= + µS + S2σ2 dt  (7)  + SσdB.

∂t ∂x 2 ∂x2

From a self-financed condition (3) we need to hav

 
∂x 

e 
t t 

atSt + btβt = a0S0 + b0β0 + 
 ∫

asdSs + 
∫ 

bsdβs. 
0 0 

or in differential form 

d(aS + bβ) = adS + bdβ = (aµS + bβr)dt + aSσdB. (8) 

Now we would like to match this with (7). Let us set ∂C a = ∂x . This way we 
match both the ∂C dB multipliers and make aµS = µS∂x . Now the equality (6) 
suggest then taking 

1 1 ∂C 
bt = (C(St, t) − atSt) = (C(St, t)  St) (9)

βt βt 
−

∂x 
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On the other hand we need to match the remaining dt coefficients in (8) and (7):
 

∂C 1 ∂2C 
bβr  = + S2σ2

∂t 2 ∂x2 

which using (9) leads to 

∂C ∂C 1 ∂2C  rC(St, t) − r St = + S2σ2
 ∂x ∂t 2 ∂x2

This defines a partial differential equation on C. To this equation we have a 
boundary condition C(x, T ) = max(x − T, 0) (as this is the only arbitrage free 
price of the option at time T ). It turns out (and quite miraculously so) that this 
PDE has indeed an explicit solution of the form (5). In retrospect we check that 
this solution is twice continuously differentiable. 

In order to make this proof rigorous, we would just take the guessed solution 
plug it in and check that the implied solution for a and b makes them a self-
financed trading strategy. Our proof approach was more in line of how this 
formula was discovered. 

3 Additional reading materials 

• Duffie ”Dynamic Asset Pricing Theory” [1]. 
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