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Large Deviations for i.i.d. Random Variables
 

Content. Chernoff bound using exponential moment generating functions. 
Properties of a moment generating functions. Legendre transforms. 

Preliminary notes 

The Weak Law of Large Numbers tells us that if X1, X2, . . . , is an i.i.d. se­
quence of random variables with mean µ £ E[X1] < ∞ then for every E > 0 

X1 + . . . + XnP(| − µ| > E) → 0, 
n 

as n → ∞. 

But how quickly does this convergence to zero occur? We can try to use Cheby­
shev inequality which says 

X1 + . . . + Xn Var(X1)P(| − µ| > E) ≤ . 
n nE2 

This suggest a ”decay rate” of order 1 if we treat Var(X1) and E as a constant. n 
Is this an accurate rate? Far from so ... 

In fact if the higher moment of X1 was finite, for example, E[X2m] < ∞, then 1 
1using a similar bound, we could show that the decay rate is at least (exercise). nm 

The goal of the large deviation theory is to show that in many interesting cases 
the decay rate is in fact exponential: e−cn. The exponent c > 0 is called the large 
deviations rate, and in many cases it can be computed explicitly or numerically. 
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2 Large deviations upper bound (Chernoff bound) 

Consider an i.i.d. sequence with a common probability distribution function 
F (x) = P(X ≤ x), x ∈ R. Fix a value a > µ, where µ is again an expectation 
corresponding to the distribution F . We consider probability that the average 
of X1, . . . , Xn exceeds a. The WLLN tells us that this happens with probabil­
ity converging to zero as n increases, and now we obtain an estimate on this 
probability. Fix a positive parameter θ > 0. We have 

  Xi1≤i≤nP( > a) = P( Xi > na) 
n 

1≤i≤n  
θ Xi θna)1≤i≤n= P(e > e 
θE[e 1≤i≤n Xi ]≤ Markov inequality 

θna  e
θXi ]E[ i e= 

θa)n ,
(e  

θXi ]But recall that Xi’s are i.i.d. Therefore E[ i e = (E[eθX1 ])n . Thus we 
obtain an upper bound  � �nθX1 ]1≤i≤n Xi E[e

P( > a) ≤ . (1)
θa n e

Of course this bound is meaningful only if the ratio E[eθX1 ]/eθa is less than 
unity. We recognize E[eθX1 ] as the moment generating function of X1 and de­
note it by M(θ). For the bound to be useful, we need E[eθX1 ] to be at least 
finite. If we could show that this ratio is less than unity, we would be done – 
exponentially fast decay of the probability would be established. 

Similarly, suppose we want to estimate  
Xi1≤i≤nP( < a), 

n 

for some a < µ. Fixing now a negative θ < 0, we obtain   
1≤i≤n Xi θ Xi θna)1≤i≤nP( < a) = P(e > e

n � �nM(θ)≤ ,
θa e
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and now we need to find a negative θ such that M(θ) < eθa . In particular, we 
need to focus on θ for which the moment generating function is finite. For this 
purpose let D(M) £ {θ : M(θ) < ∞}. Namely D(M) is the set of values θ 
for which the moment generating function is finite. Thus we call D the domain 
of M . 

3 Moment generating function. Examples and properties 

Let us consider some examples of computing the moment generating functions. 

•	 Exponential distribution. Consider an exponentially distributed random 
variable X with parameter λ. Then  ∞ 

M(θ) = e θxλe−λxdx 
0 ∞ 

= λ e −(λ−θ)xdx. 
0  ∞ −1 −(λ−θ)xWhen θ < λ this integral is equal to e  = 1/(λ − θ). Butλ−θ 0 

when θ ≥ λ, the integral is infinite. Thus the exp. moment generating 
function is finite iff θ < λ and is M(θ) = λ/(λ − θ). In this case the 
domain of the moment generating function is D(M) = (−∞, λ). 

Standard Normal distribution. When X has standard Normal distribu­
tion, we obtain  	 ∞1 − x 2 

θx M(θ) = E[e θX ] = √ e e 2 dx 
2π −∞ 	 ∞1 − x 2−2θx+θ2−θ2 

= √ e 2 dx 
2π −∞ 

θ2 
 ∞1 − (x−θ)2 

= e 2 √ e 2 dx 
2π −∞ 

Introducing change of variables y = x − θ we obtain that the integral 
2 ∞ − y 

√1is equal to e 2 dy = 1 (integral of the density of the standard −∞2π
θ2 

Normal distribution). Therefore M(θ) = e 2 . We see that it is always 
finite and D(M) = R. 

In a retrospect it is not surprising that in this case M(θ) is finite for all θ. 
−xThe density of the standard Normal distribution ”decays like” ≈ e 2 

and 
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this is faster than just exponential growth ≈ eθx. So no matter how large 
is θ the overall product is finite. 

•	 Poisson distribution. Suppose X has a Poisson distribution with param­
eter λ. Then 

∞ 
θm λ

m 
−λM(θ) = E[e θX ] = e e 

m! 
m=0 

∞ 
(eθλ)m 

−λ = e 
m! 

m=0  
eθ λ−λ  = e , 

tm(where we use the formula = et). Thus again D(M) = R. m≥0 m! 
This again has to do with the fact that λm/m! decays at the rate similar to 

θm 1/m! which is faster then any exponential growth rate e . 

We now establish several properties of the moment generating functions. 

Proposition 1. The moment generating function M(θ) of a random variable X 
satisfies the following properties: 

(a)	 M(0) = 1. If M(θ) < ∞ for some θ > 0 then M(θ') < ∞ for all 
θ' ∈ [0, θ]. Similarly, if M(θ) < ∞ for some θ < 0 then M(θ') < ∞ for 
all θ' ∈ [θ, 0]. In particular, the domain D(M) is an interval containing 
zero. 

(b) Suppose (θ1, θ2) ⊂ D(M). Then M(θ) as a function of θ is differentiable 
in θ for every θ0 ∈ (θ1, θ2), and furthermore, 

d
M(θ) = E[Xeθ0X ] < ∞. 

dθ θ=θ0 

Namely, the order of differentiation and expectation operators can be 
changed. 

Proof. Part (a) is left as an exercise. We now establish part (b). Fix any θ0 ∈ 
(θ1, θ2) and consider a θ-indexed sequence of random variables 

exp(θX) − exp(θ0X)
Yθ £	 . 

θ − θ0 
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dSince dθ exp(θx) = x exp(θx), then almost surely Yθ → X exp(θ0X), as 
θ → θ0. Thus to establish the claim it suffices to show that convergence 
of expectations holds as well, namely limθ→θ0 E[Yθ] = E[X exp(θ0X)], and 
E[X exp(θ0X)] < ∞. For this purpose we will use the Dominated Convergence 
Theorem. Namely, we will identify a random variable Z such that |Yθ| ≤ Z al­
most surely in some interval (θ0 − E, θ0 + E), and E[Z] < ∞. 

Fix E > 0 small enough so that (θ0 − E, θ0 + E) ⊂ (θ1, θ2). Let Z = 
E−1 exp(θ0X + E|X|). Using the Taylor expansion of exp(·) function, for every 
θ ∈ (θ0 − E, θ0 + E), we have 

1 1 1 
Yθ = exp(θ0X) X + (θ − θ0)X2 + (θ − θ0)2X3 + · · · + (θ − θ0)n−1Xn 

2! 3! n!

which gives 

1 1 |Yθ| ≤ exp(θ0X) |X| + (θ − θ0)|X|2 + · · · + (θ − θ0)n−1|X|n + · · · 
2! n!

1 1 ≤ exp(θ0X) |X| + E|X|2 + · · · + En−1|X|n + · · · 
2! n!  

= exp(θ0X)E−1 (exp(E|X|) − 1)  
≤ exp(θ0X)E−1 exp(E|X|)  
= Z.  

It remains to show that E[Z] < ∞. We have 

E[Z] = E−1E[exp(θ0X + EX)1{X ≥ 0}] + E−1E[exp(θ0X − EX)1{X < 0}] 
≤ E−1E[exp(θ0X + EX)] + E−1E[exp(θ0X − EX)] 
= E−1M(θ0 + E) + E−1M(θ0 − E) 
< ∞, 

since E was chosen so that (θ0 − E, θ0 + E) ⊂ (θ1, θ2) ⊂ D(M). This completes 
the proof of the proposition. 

Problem 1. 

(a) Establish part (a) of Proposition 1. 

(b) Construct an example of a random variable for which the corresponding
 
interval is trivial {0}. Namely, M(θ) = ∞ for every θ > 0.
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(c) Construct an example of a random variable X such that D(M) = [θ1, θ2] 
for some θ1 < 0 < θ2. Namely, the the domain D is a non-zero length 
closed interval containing zero. 

Now suppose the i.i.d. sequence Xi, i ≥ 1 is such that 0 ∈ (θ1, θ2) ⊂ 
D(M), where M is the moment generating function of X1. Namely, M is finite 
in a neighborhood of 0. Let a > µ = E[X1]. Applying Proposition 1, let us 
differentiate this ratio with respect to θ at θ = 0: 

θX1 ]e θaE[eθX1 ]d M(θ) E[X1e
θa − ae

= = µ − a < 0.
θa 2θa dθ e e

Note that M(θ)/eθa = 1 when θ = 0. Therefore, for sufficiently small positive 
θ, the ratio M(θ)/eθa is smaller than unity, and (1) provides an exponential 
bound on the tail probability for the average of X1, . . . , Xn. 

Similarly, if a < µ, the ratio M(θ)/eθa < 1 for sufficiently small negative 
θ. 

We now summarize our findings. 

Theorem 1 (Chernoff bound). Given an i.i.d. sequence X1, . . . , Xn suppose 
the moment generating function M(θ) is finite in some interval (θ1, θ2) : 0. Let 
a > µ = E[X1]. Then there exists θ > 0, such that M(θ)/eθa < 1 and 

nXi1≤i≤n M(θ)
P( > a) ≤ .

θa n e

Similarly, if a < µ, then there exists θ < 0, such that M(θ)/eθa < 1 and 
n 

1≤i≤n Xi M(θ)
P( < a) ≤ .

θa n e

How small can we make the ratio M(θ)/ exp(θa)? We have some freedom 
in choosing θ as long as E[eθX1 ] is finite. So we could try to find θ which 
minimizes the ratio M(θ)/eθa. This is what we will do in the rest of the lecture. 
The surprising conclusion of the large deviations theory is very often that such 
a minimizing value θ∗ exists and is tight. Namely it provides the correct decay 
rate! In this case we will be able to say 

Xi1≤i≤nP( > a) ≈ exp(−I(a, θ ∗ )n), 
n   

awhere I(a, θ∗) = − log M(θ∗)/eθ
∗ 

. 
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4 Legendre transforms
 

Theorem 1 gave us a large deviations bound (M(θ)/eθa)n which we rewrite as 
e−n(θa−log M(θ)). We now study in more detail the exponent θa − log M(θ). 

Definition 1. A Legendre transform of a random variable X is the function 
I(a) £ supθ∈R(θa − log M(θ)). 

Let us go over the examples of some distributions and compute their corre­
sponding Legendre transforms. 

•	 Exponential distribution with parameter λ. Recall that M(θ) = λ/(λ− 
θ) when θ < λ and M(θ) = ∞ otherwise. Therefore when θ < λ 

λ 
I(a) = sup (aθ − log )

λ − θ 
= sup (aθ − log λ + log(λ − θ)), 

θ 

θ 

and I(a) = −∞ otherwise. Setting the derivative of g(θ) = aθ − log λ + 
log(λ − θ) equal to zero we obtain the equation a − 1/(λ − θ) = 0 which 
has the unique solution θ∗ = λ − 1/a. For the boundary cases, we have 
aθ − log λ + log(λ − θ)) → −∞ when either θ ↑ λ or θ → −∞ (check). 
Therefore 

I(a) = a(λ − 1/a) − log λ + log(λ − λ + 1/a) 
= aλ − 1 − log λ + log(1/a) 
= aλ − 1 − log λ − log a. 

The large deviations bound then tells us that when a > 1/λ 

Xi1≤i≤n −(aλ−1−log λ−log a)nP( > a) ≈ e	 . 
n 

−(.2−log 1.2)nSay λ = 1 and a = 1.2. Then the approximation gives us ≈ e . 

Note that we can obtain an exact expression for this tail probability. In­
deed, X1, X1 +X2, . . . , X1 +X2 · · ·+Xn, . . . are the events of a Poisson 
process with parameter λ = 1. Therefore we can compute the probabil­
ity P( Xi > 1.2n) exactly: it is the probability that the Poisson 1≤i≤n 

7 

∑



  
 

 
 

  
 

process has at most n − 1 events before time 1.2n. Thus 

Xi1≤i≤nP( > 1.2) = P( Xi > 1.2n) 
n 

1≤i≤n 

(1.2n)k 
−1.2n = e . 

k! 
0≤k≤n−1 

It is not at all clear how revealing this expression is. In hindsight, we 
know that it is approximately e−(.2−log 1.2)n, obtained via large deviations 
theory. 

• Standard Normal distribution. Recall that M(θ) = e 
θ
2

2 

when X1 has 
the standard Normal distribution. The expected value µ = 0. Thus we fix 
a > 0 and obtain 

θ2 
I(a) = sup (aθ − )

2θ 
2a

= ,
2 

achieved at θ∗ = a. Thus for a > 0, the large deviations theory predicts 
that 

2Xi1≤i≤n − a nP( > a) ≈ e 2 . 
n 

1≤i≤nAgain we could compute this probability directly. We know that 
Xi 

n 
is distributed as a Normal random variable with mean zero and variance 
1/n. Thus 

√ 

n 2π a 

After a little bit of technical work one could show that this integral is 
a+E”dominated” by its part around a, namely, ·, which is further approx­a √ 2 

n − aimated by the value of the function itself at a, namely √ e 2 n. This is 
2π 

consistent with the value given by the large deviations theory. Simply the √ 
lower order magnitude term √ n disappears in the approximation on the 

2π 
log scale. 
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• Poisson distribution. Suppose X has a Poisson distribution with param­
eeter λ. Recall that in this case M(θ) = e θλ−λ. Then 

I(a) = sup (aθ − (e θλ − λ)). 
θ 

Setting derivative to zero we obtain θ∗ = log(a/λ) and I(a) = a log(a/λ)− 
(a − λ). Thus for a > λ, the large deviations theory predicts that 

Xi1≤i≤n −(a log(a/λ)−a+λ)nP( > a) ≈ e	 . 
n 

In this case as well we can compute the large deviations probability ex­
plicitly. The sum X1 + · · · + Xn of Poisson random variables is also a 
Poisson random variable with parameter λn. Therefore 

(λn)m 
−λnP( Xi > an) = e . 

m! 
1≤i≤n m>an 

But again it is hard to infer a more explicit rate of decay using this expres­
sion 

Additional reading materials 

•	 Chapter 0 of [2]. This is non-technical introduction to the field which de­
scribes motivation and various applications of the large deviations theory. 
Soft reading. 

•	 Chapter 2.2 of [1]. 
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